4.下列向量中不是單位向量的是( 。
A.(-1,0)B.(1,1)C.(cos37°,sin37°)D.$\frac{\overline a}{{|{\overline a}|}}(|{\overline a}|≠0)$

分析 根據(jù)向量的模長公式進(jìn)行計算即可.

解答 解:A.|$\overrightarrow{a}$|=1,是單位向量.
B.|$\overrightarrow{a}$|=$\sqrt{{1}^{2}+{1}^{2}}=\sqrt{2}$≠1,不是單位向量.
C.|$\overrightarrow{a}$|=$\sqrt{co{s}^{2}37°+si{n}^{2}37°}$=1,是單位向量.
D.|$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$|=$\frac{|\overrightarrow{a}|}{|\overrightarrow{a}|}=1$,則$\frac{\overline a}{{|{\overline a}|}}(|{\overline a}|≠0)$是單位向量.
故選:B

點(diǎn)評 本題主要考查單位向量的判斷,根據(jù)向量模長公式進(jìn)行計算是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC,點(diǎn)E是三角形內(nèi)一點(diǎn),BE延長后交AC于點(diǎn)D,設(shè)∠DBC=30°,∠DCE=10°,∠ECB=20°,∠DBA=40°.
(1)若AB=$\frac{2}{sin40°}$,求AD的長;
(2)求證:∠BAE=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,內(nèi)角A,B,C所對的邊分別a,b,c,其中a=2,A=60°,則b-2c的取值范圍為(-4,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.分別求下列函數(shù)的導(dǎo)數(shù):
(1)y=ex•cos x;
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$)
(3)y=ln$\sqrt{1+{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)復(fù)數(shù)z滿足(1+2i)z=1-2i,則z位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.用更相減損術(shù)求459和357的最大公約數(shù),需要減法的次數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若2a=5b=10,則$\frac{1}{a}$+$\frac{1}$=1,lg8+2log510=$\frac{3}{a}$+2b(用a、b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.實數(shù)x取什么值時,復(fù)數(shù)z=(x2+x-6)+(x2-2x-15)i是:①實數(shù);②虛數(shù);③純虛數(shù);④零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下面給出了四個類比推理,結(jié)論正確的是( 。
①由若a,b,c∈R則(ab)c=a(bc);類比推出:若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為三個向量則($\overrightarrow{a}$$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$$\overrightarrow{c}$)
②在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則$\frac{AG}{GD}$=2;類比推出:在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則$\frac{AO}{OM}$=3.
③a,b為實數(shù),若a2+b2=0則a=b=0;類比推出:z1,z2為復(fù)數(shù),若z12+z22=0則z1=z2
④若數(shù)列{an}是等差數(shù)列,對于bn=$\frac{1}{n}({a_1}$+a2+…+an),則數(shù)列{bn}也是等差數(shù)列;類比推出:若數(shù)列{cn}是各項都為正數(shù)的等比數(shù)列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,則數(shù)列{dn}也是等比數(shù)列.
A.①②B.②③C.②④D.③④

查看答案和解析>>

同步練習(xí)冊答案