8.如圖,某炮兵陣地位于A點,兩觀察所分別位于C、D兩點,已知△ACD為正三角形,且DC=$\sqrt{3}$km,當目標出現(xiàn)在B時,測得∠CDB=45°,∠BCD=75°,求炮兵陣地與目標的距離是多少?(精確到0.01km)

分析 在△BCD中使用正弦定理求出BC,再在△ABC中使用余弦定理求出AB.

解答 解:∵∠CDB=45°,∠BCD=75°,∴∠CBD=60°.
在△BCD中,由正弦定理得$\frac{CD}{sin∠CBD}=\frac{BC}{sin∠BDC}$,即$\frac{\sqrt{3}}{sin60°}=\frac{BC}{sin45°}$,
解得BC=$\sqrt{2}$.
∵△ACD為正三角形,∴AC=$\sqrt{3}$,∠ACD=60°,∴∠ACB=135°.
在△ABC中,由余弦定理得:AB2=BC2+AC2-2BC•AC•cos∠ACB=2+3-2$\sqrt{3}$=5+2$\sqrt{3}$.
∴AB=$\sqrt{5+2\sqrt{3}}$≈2.91(km).

點評 本題考查了正弦定理,余弦定理,解三角形的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,角A,B,C所對邊長分別為a,b,c,若b2+c2=2a2,則cosA的最小值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.學校游園活動有這樣一個游戲:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除了顏色外完全相同,每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個白球的概率.
②獲獎的概率.
(2)求在3次游戲中獲獎次數(shù)X的分布列.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設隨機變量ξ服從正態(tài)分布N(4,7),若P(ξ>a+2)=P(ξ<a-2),則a=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設數(shù)列{an}的前n項和為Sn,滿足a1=1,an+1=2Sn+n+1(n∈N*),數(shù)列{bn}滿足b1=1,bn=an($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n-1}}$)(n≥2,且n∈N*).
(1)求證數(shù)列{an+$\frac{1}{2}$}為等比數(shù)列,并求出an;
(2)(1)證明:$\frac{1+_{n}}{_{n+1}}$=$\frac{{a}_{n}}{{a}_{n+1}}$(n≥2,且n∈N*).
(2)證明:(1+$\frac{1}{_{1}}$)(1+$\frac{1}{_{2}}$)…(1+$\frac{1}{_{n}}$)<3(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如果直線ax+y+1=0與直線3x-y-2=0垂直,則系數(shù)a=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.一扇形的周長為20cm,當扇形的圓心角α等于多少時,這個扇形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知f(x)=x2-1,g(x)=3x+1,則g[f(0)]=-2,f[g(x)]=9x2+6x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F1(-1,0),且長軸長是短軸長的$\sqrt{2}$倍.
(1)求橢圓M的方程;
(2)若斜率為$\frac{1}{2}$的直線l與橢圓M位于x軸上方的部分交于C,D兩點,過C,D兩點分別做CE,DF垂直x軸于E,F(xiàn)兩點,若四邊形CEFD的面積為$\frac{2\sqrt{2}}{3}$,求直線l的方程.

查看答案和解析>>

同步練習冊答案