19.已知條件p:-3≤x≤1,條件q:-a≤x≤a,且p是q的必要不充分條件,則實(shí)數(shù)a的取值范圍是( 。
A.0≤a≤1B.1≤a≤3C.a≤1D.a≥3

分析 p是q的必要不充分條件,可得$\left\{\begin{array}{l}{-3≤-a}\\{a≤1}\end{array}\right.$,解出即可得出.

解答 解:∵p是q的必要不充分條件,∴$\left\{\begin{array}{l}{-3≤-a}\\{a≤1}\end{array}\right.$,解得a≤1,
∴實(shí)數(shù)a的取值范圍是(-∞,1].
故選:C.

點(diǎn)評(píng) 本題考查了不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.有命題:
(1)三階行列式的任一元素的代數(shù)余子式的值和其余子式的值互為相反數(shù);
(2)三階行列式可以按其任意一行展開(kāi)成該行元素與其對(duì)應(yīng)的代數(shù)余子式的乘積之和;
(3)如果將三階行列式的某一列的元素與另一列的元素的代數(shù)余子式對(duì)應(yīng)相乘,那么它們的乘積之和等于零,其中所有正確命題的序號(hào)是(  )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.給出下列四個(gè)語(yǔ)句:①兩條異面直線有公共點(diǎn);②你是二十四中的學(xué)生嗎?③x∈{1,2,3,4};④方向相反的兩個(gè)向量是共線向量.其中是命題的共有( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C的中心在原點(diǎn),左焦點(diǎn)為F1(-1,0),右準(zhǔn)線方程為:x=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C上點(diǎn)N到定點(diǎn)M(m,0)(0<m<2)的距離的最小值為1,求m的值及點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知集合A={1,3,x2},B={1,2-x},且B⊆A.
(1)求實(shí)數(shù)x的值;    
(2)若B∪C=A,且集合C中有兩個(gè)元素,求集合C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若函數(shù)f(x)在定義域D內(nèi)某區(qū)間I上是增函數(shù),而F(x)=$\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)在I上是“弱增函數(shù)”.
(1)請(qǐng)分別判斷f(x)=x+4,g(x)=x2+4x+2在x∈(1,2)是否是“弱增函數(shù)”,
并簡(jiǎn)要說(shuō)明理由;
(2)若函數(shù)h(x)=x2+(sinθ-$\frac{1}{2}$)x+b(θ、b是常數(shù))
(i)若θ∈[{0,$\frac{π}{2}}$],x∈[0,$\frac{1}{4}}$]求h(x)的最小值.(用θ、b表示);
(ii)在x∈(0,1]上是“弱增函數(shù)”,試探討θ及正數(shù)b應(yīng)滿足的條件,并用單調(diào)性的定義證明..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知命題p1:設(shè)函數(shù)f(x)=ax2+bx+c(a>0),且f(1)=-a,則f(x)在(0,2)上必有零點(diǎn);
p2:設(shè)a,b∈R,則“a>b”是“a|a|>b|b|”的充分不必要條件.
則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q1:p1∧(¬p2)中,真命題是( 。
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB,E是PD的中點(diǎn).
(1)求證:PB∥平面EAC;
(2)求證:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,角A,B,C的對(duì)邊為a,b,c,角A,B,C的大小成等差數(shù)列,向量$\overrightarrow{m}$=(sin$\frac{A}{2}$,cos$\frac{A}{2}$),=(cos$\frac{A}{2}$,-$\sqrt{3}$cos$\frac{A}{2}$),f(A)=$\overrightarrow{m}$•$\overrightarrow{n}$,
(1)若f(A)=-$\frac{\sqrt{3}}{2}$,試判斷三角形ABC的形狀;
(2)若b=$\sqrt{3}$,a=$\sqrt{2}$,求邊c及S△ABC

查看答案和解析>>

同步練習(xí)冊(cè)答案