8.設(shè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角是$\frac{2π}{3}$,若($\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$)⊥(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),則實數(shù)k的值是$\frac{5}{4}$.

分析 首先求出單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的數(shù)量積,再根據(jù)($\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$)⊥(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)數(shù)量積為0,得到關(guān)于k 的方程解之即可.,

解答 解:因為單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角是$\frac{2π}{3}$,所以$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=1×1×cos\frac{2π}{3}=-\frac{1}{2}$,并且($\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$)⊥(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),
所以($\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$)•(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)=0,展開得$k{\overrightarrow{{e}_{1}}}^{2}-2{\overrightarrow{{e}_{2}}}^{2}+(1-2k)\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=0$,即k-2-$\frac{1}{2}$(1-2k)=0,
解得k=$\frac{5}{4}$;
故答案為:$\frac{5}{4}$

點評 本題考查了平面向量的數(shù)量積公式的應(yīng)用以及向量垂直的性質(zhì);屬于常規(guī)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.下列說法中,正確的是(  )
A.第二象限的角是鈍角B.第三象限的角必大于第二象限的角
C.方程$sinx-cosx=\frac{1}{2}$無解D.方程sinx+cosx=2無解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若復數(shù)z滿足$\frac{{|{1+i}|}}{z}$=1-i,則復數(shù)z的共軛復數(shù)$\bar z$的虛部為( 。
A.$-\frac{{\sqrt{2}}}{2}i$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,且an+Sn=n.
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)設(shè)bn=lo${g}_{\frac{1}{2}}$(1-an)時,求數(shù)列{$\frac{1}{{_{n}b}_{n+2}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=|x-1|,g(x)=-|x+3|+a(a∈R)
(1)若a=6,解不等式f(x)>g(x);
(2)若函數(shù)y=2f(x)的圖象恒在函數(shù)y=g(x)的圖象的上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知雙曲線$\frac{x^2}{a^2}-{y^2}=1(a>0)$的實軸長、虛軸長、焦距長成等差數(shù)列,則雙曲線的漸近線方程為y=±$\frac{4}{3}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知集合M={x|3-x>0},N={1,2,3,4,5},則M∩N={1,2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知數(shù)列{an}滿足${a_{n+1}}=\frac{1}{2}+\sqrt{{a_n}-{a_n}^2}$,且a1=0,則該數(shù)列的前100項的和等于(  )
A.24B.25C.74D.75

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+2),x<2}\\{(\frac{1}{2})^{x},x>2}\end{array}\right.$,則f(1)的值為$\frac{1}{8}$.

查看答案和解析>>

同步練習冊答案