12.設(shè)有一個線性回歸方程$\stackrel{∧}{y}$=2-3.5x,則變量x增加1個單位時(  )
A.y平均增加3.5個單位B.y平均增加2個單位
C.y平均減少3.5個單位D.y平均減少2個單位

分析 回歸方程y=2-3.5x,變量x增加一個單位時,變量y平均變化[2-3.5(x+1)]-(2-3.5x),及變量y平均減少3.5個單位,得到結(jié)果.

解答 解:回歸方程$\widehat{y}$=2-3.5x,變量x增加一個單位時,
變量y平均變化[2-3.5(x+1)]-(2-3.5x)=-3.5,
∴變量y平均減少3.5個單位,
故選:C.

點評 本題考查線性回歸方程的應(yīng)用,考查線性回歸方程自變量變化一個單位,對應(yīng)的預(yù)報值是一個平均變化,這是容易出錯的知識點.屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知f(x)是定義在R內(nèi)的以6為周期的偶函數(shù),若f(1)<1,f(11)=$\frac{2a-3}{a+1}$,則實數(shù)a的取值范圍為( 。
A.(-1,4)B.(-2,1)C.(-1,O)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.隨機變量X~N(0,22),且P(-2<X≤0)=a,則P(X≤-2)=0.5-a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}為等差數(shù)列,且a1=3,a1+a2+a3=12.
(1)數(shù)列{an}的通項公式;
(2)令bn=3${\;}^{{a}_{n}}$,求證:數(shù)列{bn}是等比數(shù)列
(3)求證:$\frac{1}{(2{a}_{1}-5)^{2}}$+$\frac{1}{(2{a}_{2}-5)^{2}}$+…+$\frac{1}{(2{a}_{n}-5)^{2}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若數(shù)列{an}滿足前n項和Sn=2an-4(n∈N*),數(shù)列{bn}滿足bn+1=an+2bn,且b1=2.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知點P在曲線y=$\frac{1}{{e}^{x}+1}$(其中e為自然對數(shù)的底數(shù))上運動,則曲線在點P處的切線斜率最小時的切線方程為y=-$\frac{1}{4}$x+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=alnx+x2-8x+c.
(1)若a>0,求f(x)的單調(diào)區(qū)間;
(2)若a=6,對任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.將長為l的鐵絲剪成兩段,分別圍成長與寬之比為2:1及3:2的矩形,那么面積的和的最小值為$\frac{3}{104}{l^2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某算法的程序框圖如圖所示,其中輸入的變量z在1,2,3,…,36這36個整數(shù)中等可能隨機產(chǎn)生,則按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=l,2,3)分別為( 。
A.$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{6}$B.$\frac{1}{6}$,$\frac{1}{2}$,$\frac{1}{3}$C.$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{6}$D.$\frac{1}{2}$,$\frac{1}{6}$,$\frac{1}{3}$

查看答案和解析>>

同步練習冊答案