分析 可設(shè)剪成2段中的其中一段長為xcm,則其圍成矩形后的長、寬分別為$\frac{2x}{6}$,$\frac{x}{6}$;另一段長為(l-x)cm,則其圍成矩形后的長、寬分別為$\frac{3(l-x)}{10}$,$\frac{2(l-x)}{10}$,依題意可得兩矩形的面積之和,再利用函數(shù)的導(dǎo)數(shù),求函數(shù)的極小值,且為最小值即可.
解答 解:設(shè)剪成2段中其中一段為xcm,另一段為(l-x)cm,
依題意知:S=S1+S2=$\frac{x}{6}$•$\frac{x}{3}$+$\frac{3(l-x)}{10}$•$\frac{l-x}{5}$
=$\frac{1}{18}$x2+$\frac{3}{50}$(l-x)2,0<x<l,
可得S′=$\frac{1}{9}$x-$\frac{3}{25}$(l-x),
令S′=0,則x=$\frac{27}{52}$l,
當(dāng)$\frac{27}{52}$l<x<l時(shí),S′>0,函數(shù)s遞增;
當(dāng)0<x<$\frac{27}{52}$l,S′<0,函數(shù)s遞減.
則函數(shù)s在x=$\frac{27}{52}$l處取得極小值,且為最小值$\frac{3}{104}{l^2}$.
故答案為:$\frac{3}{104}{l^2}$.
點(diǎn)評 本題考查函數(shù)的最值的求法,注意運(yùn)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,可得函數(shù)的極值,且為最值,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y平均增加3.5個(gè)單位 | B. | y平均增加2個(gè)單位 | ||
C. | y平均減少3.5個(gè)單位 | D. | y平均減少2個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | -2$\sqrt{3}$ | C. | 2i | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 6 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 4 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com