2.已知三棱錐P-ABC,平面PBC⊥平面ABC,△ABC是邊長為2的等邊三角形,O為它的中心,PB=PC=$\sqrt{2}$,D為PC的中點.
(1)若邊PA上是否存在一點E,使得AC⊥平面BOE,若存在,確定點E的位置;若不存在,請說明理由;
(2)求二面角P-BD-O的余弦值.

分析 (1)存在E為AP的三等分點且AE=2EP,根據(jù)線面垂直的判定定理即可證明CF⊥平面B1DF;
(2)建立空間坐標系,求出平面的法向量,即可求二面角P-BD-O的余弦值.

解答 解:(1)存在E為AP的三等分點且AE=2EP,
∵,△ABC是邊長為2的等邊三角形,O為它的中心,
∴BO⊥AC,
連接AO延長BC與F,連接PF,
F為BC的中點,AO=2OF,
∵PB=PC,∴PF⊥BC,
∵面PBC⊥平面ABC,
∴PF⊥平面ABC,即PF⊥AC,
在邊AP上取點E,使AE=2EP,則$\frac{AE}{EP}=\frac{AO}{OF}$,
∴EO∥PF,EO⊥AC,
∵EO∩BO=O,
∴AC⊥平面BOE,
∴存在E為AP的三等分點且AE=2EP.
(2)取BC的中點F,連接PF,
∵PB=PC,∴PF⊥BC,
∵平面PBC⊥平面ABC,∴PF⊥平面ABC,
∵△ABC為等邊三角形,
∴FA,F(xiàn)B,F(xiàn)P兩兩垂直,
建立以F為坐標原點,F(xiàn)A,F(xiàn)B,F(xiàn)C分別為x,y,z軸的空間直角坐標系如圖:

∵正三角形ABC的邊長為2,PB=PC=$\sqrt{2}$,
∴PF=1,
則P(0,0,1),C(0,-1,0),D(0,-$\frac{1}{2}$,$\frac{1}{2}$),O($\frac{\sqrt{3}}{3}$,0,0),B(0,1,0),
則$\overrightarrow{BO}$=($\frac{\sqrt{3}}{3}$,-1,0),$\overrightarrow{BD}$=(0,-$\frac{3}{2}$,$\frac{1}{2}$).
設(shè)平面DOB的法向量為$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{n}$•$\overrightarrow{BO}$=$\frac{\sqrt{3}}{3}$x-y=0,$\overrightarrow{n}$•$\overrightarrow{BD}$=-$\frac{3}{2}$y+$\frac{1}{2}$z=0.
令y=1,則x=$\sqrt{3}$,z=3,
則$\overrightarrow{n}$=($\sqrt{3}$,1,3),
由題意得平面PBD的法向量為$\overrightarrow{m}$=(1,0,0),
則cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{13}}$=$\frac{\sqrt{39}}{13}$,
∵二面角P-BD-O為鈍二面角,
∴二面角P-BD-O的余弦值為-$\frac{\sqrt{39}}{13}$.

點評 本題主要考查空間線面垂直的判斷以及二面角的求解,利用線面垂直的判定定理以及二面角的定義是解決本題的關(guān)鍵.考查學生的運算和推理能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知m,n是不同的直線,α、β是不同的平面,下列命題中,正確的是( 。
A.若α⊥β,α∩β=m,n⊥m,則n⊥α或n⊥βB.若α∥β,m?α,n?α,則m∥n
C.若m⊥α,n⊥β,α∥β,則m∥nD.若α∩β=m,n∥m,則n∥α,且n∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥平面ABCD,Q為AD的中點,PA=PD,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求證:平面PQB⊥平面PAD;
(2)若異面直線AB與PC所成角為60°,求PA的長;
(3)在(2)的條件下,求平面PQB與平面PDC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在直角坐標平面內(nèi),已知點A(-1,3),B(2,5),$\overrightarrow{AC}$=(1,2).
(1)求$\overrightarrow{CB}$;
(2)求(2$\overrightarrow{AC}$+$\overrightarrow{CB}$)•$\overrightarrow{BA}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知f(x)是定義在區(qū)間[1,4]上的函數(shù),若對[1,4]上的任意的兩個自變量x1,x2,總有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則不等式f(x+2)>f(3-2x)的解集為[-$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)可導,則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{3△x}$=( 。
A.f′(1)B.$\frac{1}{3}$f′(1)C.不存在D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知一個幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知圓M:(x-1)2+(y-1)2=4,直線l過點P(2,3)且與圓M交于A,B兩點,且|AB|=2$\sqrt{3}$.
(Ⅰ)求直線l方程;
(Ⅱ)設(shè)Q(x0,y0)為圓M上的點,求x02+y02的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在平面直角坐標系xOy中,已知A(3,0),B(0,4),C(6,t).
(1)若點A,B,C在同一條直線上,求實數(shù)t的值;
(2)若△ABC是以BC為底邊的等腰三角形,求△ABC的面積.

查看答案和解析>>

同步練習冊答案