16.已知函數(shù)y=x+1+lnx在點(diǎn)A(1,2)處的切線為l,若l與二次函數(shù)y=ax2+(a+2)x+1的圖象也相切,則實(shí)數(shù)a的取值為( 。
A.12B.8C.4D.0

分析 求出y=x+1+lnx的導(dǎo)數(shù),求得切線的斜率,可得切線方程,再由于切線與曲線y=ax2+(a+2)x+1相切,有且只有一切點(diǎn),進(jìn)而可聯(lián)立切線與曲線方程,根據(jù)△=0得到a的值.

解答 解:y=x+1+lnx的導(dǎo)數(shù)為y′=1+$\frac{1}{x}$,
曲線y=x+1+lnx在x=1處的切線斜率為k=2,
則曲線y=x+1+lnx在x=1處的切線方程為y-2=2x-2,即y=2x.
由于切線與曲線y=ax2+(a+2)x+1相切,
y=ax2+(a+2)x+1可聯(lián)立y=2x,
得ax2+ax+1=0,
又a≠0,兩線相切有一切點(diǎn),
所以有△=a2-4a=0,
解得a=4.
故選:C.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線方程,主要考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處的導(dǎo)數(shù),設(shè)出切線方程運(yùn)用兩線相切的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+x2-ax(a∈R)
(1)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤2x2恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證;lnn>$\frac{1}{3}$+$\frac{1}{5}$+1$\frac{1}{7}$+…+$\frac{1}{2n-1}$(n∈N+)且n≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓E:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,A,F(xiàn)分別是橢圓E的左頂點(diǎn),上焦點(diǎn),直線AF的斜率為$\sqrt{3}$,直線l:y=kx+m與y軸交于異于原點(diǎn)的點(diǎn)P,與橢圓E交于M,N兩個(gè)相異點(diǎn),且$\overrightarrow{MP}$=λ$\overrightarrow{PN}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在實(shí)數(shù)m,使$\overrightarrow{OM}$+λ$\overrightarrow{ON}$=4$\overrightarrow{OP}$?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)$y=\sqrt{1-tan({x-\frac{π}{4}})}$的定義域?yàn)椋ā 。?table class="qanwser">A.$(kπ,kπ+\frac{π}{4}],k∈Z$B.$(kπ,kπ+\frac{π}{2}],k∈Z$C.$(kπ-\frac{π}{4},kπ+\frac{π}{2}],k∈Z$D.$(kπ-\frac{π}{4},kπ],k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知在△ABC中,BC=15,AC=10,A=60°,則cosB=$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.過拋物線y2=4x的焦點(diǎn)作直線交拋物線雨點(diǎn)A(x1,y1),B(x2,y2),若|AB|=7,求AB的中點(diǎn)M到拋物線準(zhǔn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,D是BC上的點(diǎn),AD平分∠BAC,BD=2DC,∠B=30°,則C等于( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.3名同學(xué)分別從5個(gè)風(fēng)景點(diǎn)中選擇一處游覽,不同的選法種數(shù)是( 。
A.10B.60C.125D.243

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z滿足$\frac{z+1}{1-i}=i$,則復(fù)數(shù)z的虛數(shù)為( 。
A.-iB.iC.1D.-1

查看答案和解析>>

同步練習(xí)冊答案