7.若關(guān)于x的不等式x+$\frac{4}{x}$≥a2-3a對(duì)任意實(shí)數(shù)x>0恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.[-1,4]B.(-∞,-2]∪[5,+∞)C.(-∞,-1]∪[4,+∞)D.[-2,5]

分析 利用基本不等式求出不等式x+$\frac{4}{x}$的最小值為4,轉(zhuǎn)化 4≥a2-3a,由此解得實(shí)數(shù)a的取值范圍.

解答 解:∵x>0,∴不等式x+$\frac{4}{x}$$≥2\sqrt{x•\frac{4}{x}}$=4,當(dāng)且僅當(dāng)x=2時(shí),表達(dá)式取得最小值為4,
由關(guān)于x的不等式x+$\frac{4}{x}$≥a2-3a對(duì)任意實(shí)數(shù)x>0恒成立,
可得 4≥a2-3a,解得-1≤a≤4,
故選:A.

點(diǎn)評(píng) 本題主要考查基本不等式的應(yīng)用,函數(shù)恒成立,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,2cos(A-C)+cos2B=1+2cosAcosC.
(1)求證:a,b,c依次成等比數(shù)列;
(2)若b=2,求u=|$\frac{{a}^{2}+{c}^{2}-5}{a-c}$|的最小值,并求u達(dá)到最小值時(shí)cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若(a-2)(a-1)x2+2(a-2)x-4<0對(duì)一切x∈R恒成立,則實(shí)數(shù)a的取值范圍是($\frac{6}{5}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x2-2x,則當(dāng)x∈(-∞,0)時(shí),f(x)=-x2-2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若定義在R上的偶函數(shù)y=f(x)在(-∞,-1]上是增函數(shù),則下列各式成立的是( 。
A.f($\sqrt{2}$)>f(-$\sqrt{2}$)B.f(-2)>f(3)C.f(3)<f(4)D.f($\sqrt{2}$)>f($\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.?x∈R,x2-2x+3>0的否定是( 。
A.不存在x∈R,使?x2-2x+3≥0B.?x∈R,x2-2x+3≤0
C.?x∈R,x2-2x+3≤0D.?x∈R,x2-2x+3>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.?dāng)?shù)列{an}滿足a1=3,an-an•an+1=1,An表示{an}前n項(xiàng)之積,則A2016的值為( 。
A.-$\frac{1}{2}$B.$\frac{2}{3}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列各式計(jì)算正確的個(gè)數(shù)是( 。
①(-7)•6$\overrightarrow a$=-42$\overrightarrow a$;②$\overrightarrow a$-2$\overrightarrow b$+2(${\overrightarrow a$+$\overrightarrow b}$)=3$\overrightarrow a$;③$\overrightarrow a$+$\overrightarrow b$-($\overrightarrow a$+$\overrightarrow b}$)=$\overrightarrow 0$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,在2×4的方格紙中,若$\overrightarrow{a}$和$\overrightarrow$是起點(diǎn)和終點(diǎn)均在格點(diǎn)的向量,則向量2$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow a$-$\overrightarrow b$的夾角余弦值是$-\frac{{\sqrt{10}}}{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案