16.定積分${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx的值為2π.

分析 ${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx表示以原點(diǎn)為圓心以2為半徑的圓的面積的二分之一,問題得以解決.

解答 解:${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx表示以原點(diǎn)為圓心以2為半徑的圓的面積的二分之一,
故${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx=$\frac{1}{2}π×{2}^{2}$=2π
故答案為:2π

點(diǎn)評(píng) 本題考查了定積分的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的前n項(xiàng)和Sn,n∈N*,a2=5,S8=100
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=4an+2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=Asin(ωx+φ),(ω>0,|φ|<π)在一個(gè)周期內(nèi)的圖象如圖所示,為了得到y(tǒng)=2sin2x的圖象,只需將f(x)的圖象(  )
A.向右平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度B.向左平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{2π}{3}$個(gè)單位長(zhǎng)度D.向左平移$\frac{2π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)Y=$\frac{sinx-cosx}{2cosx}$在點(diǎn)${x_0}=\frac{π}{3}$處的導(dǎo)數(shù)等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展開式中,求含x3的項(xiàng)的系數(shù);
(2)若(2-x)6展開式中第二項(xiàng)小于第一項(xiàng),但不小于第三項(xiàng),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.利用隨機(jī)模擬方法計(jì)算曲線y=$\frac{1}{x}$,x=1,x=2和y=0所圍成的如圖陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對(duì)于序列A0:a0,a1,a2,…,an(n∈N*),實(shí)施變換T得序列A1:a1+a2,a2+a3,…,an-1+an,記作A1=T(A0):對(duì)A1繼續(xù)實(shí)施變換T得序列A2=T(A1)=T(T(A0)),記作A2=T2(A0);…;An-1=Tn-1(A0).最后得到的序列An-1只有一個(gè)數(shù),記作S(A0).
(Ⅰ)若序列A0為1,2,3,求S(A0);
(Ⅱ)若序列A0為1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一樣,則稱序列A與B相等,記作A=B,若序列B為序列A0:1,2,…,n的一個(gè)排列,請(qǐng)問:B=A0是S(B)=S(A0)的什么條件?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示,在一個(gè)邊長(zhǎng)為1的正方形AOBC內(nèi),曲線y=x3(x>0)和曲線y=$\sqrt{x}$圍成一個(gè)葉形圖(陰影部分),向正方形AOBC內(nèi)隨機(jī)投一點(diǎn)(該點(diǎn)落在正方形AOBC內(nèi)任何一點(diǎn)是等可能的),則所投的點(diǎn)落在葉形圖內(nèi)部的概率是( 。
A.$\frac{5}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(Ⅰ)已知數(shù)列{an}的前n項(xiàng)和Sn=3n2-2n,求證:數(shù)列{an}成等差數(shù)列;
(Ⅱ)設(shè){bn}是首項(xiàng)b1=3,公比為q的等比數(shù)列,且b1,b2,b3成等差數(shù)列,求{bn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案