13.已知數(shù)列{an}滿足a1=2,an+1=a${\;}_{n}^{2}$-nan+1(n∈N*
(Ⅰ)求a2,a3,a4的值,猜出通項(xiàng)an,并用數(shù)學(xué)歸納法證明你的結(jié)論;
(Ⅱ)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (Ⅰ)通過an+1=an2-nan+1、a1=2代入計(jì)算即得結(jié)論;先證明n=1時(shí)等式成立,再假設(shè)n=k時(shí)等式成立,進(jìn)而論證n=k+1時(shí),等式依然成立,最終得到不等式an=n+1成立;
(Ⅱ)求得bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,再由數(shù)列的求和方法:裂項(xiàng)相消求和,化簡(jiǎn)即可得到所求和.

解答 解:(Ⅰ)依題意,a2=a12-a1+1=22-2+1=3,
a3=a22-2a2+1=32-2×3+1=4,
a4=a32-3a3+1=42-3×4+1=5;
猜想:an=n+1.
用數(shù)學(xué)歸納法證明如下:
①當(dāng)n=1時(shí),a1=2,顯然成立;
②假設(shè)當(dāng)n=k(k≥2)時(shí),ak=k+1,
那么ak+1=ak(ak-k)+1
=(k+1)(k+1-k)+1
=k+2,
也就是說(shuō),當(dāng)n=k+1時(shí),ak+1=(k+1)+1.
由①、②可知:對(duì)于所有n≥1,有an=n+1.
(Ⅱ)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
前n項(xiàng)和Sn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n}{2(n+2)}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查數(shù)學(xué)歸納法的運(yùn)用,以及數(shù)列的求和方法:裂項(xiàng)相消求和,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}中,a1=1,且an+1-an=3n(n∈N*),求通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知tanx=-3.62,求0°~360°范圍內(nèi)的角x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.化簡(jiǎn):$\frac{\frac{1}{2}sin2}{cos\frac{1}{2}+cos\frac{3}{2}}$=sin$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.己知四棱錐中,PA⊥平面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=120°,PA=2.
(1)求證:平面PBD⊥平面PAC;
(2)若G為PC的中點(diǎn),求多面體P-ABDG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在(1+x)5的展開式中,x2的系數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.tan105°=-(2+$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=f(x)-3|x|為奇函數(shù),且f(-2)=9,若g(x)=f(x)+1,則g(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.正三角形ABC的邊長(zhǎng)為4,D、E分別是AB、AC的中點(diǎn),求:
(1)$\overrightarrow{DE}$•$\overrightarrow{BC}$;
(2)$\overrightarrow{AB}$•$\overrightarrow{AC}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案