7.設(shè)全集U={0,1,2,3,4,5},集合A={2,4},B={x|x2-5x+4<0,x∈U},則集合(∁UA)∩(∁UB)=( 。
A.{0,4,5,2}B.{0,4,5}C.{2,4,5}D.{0,1,5}

分析 化簡集合B,根據(jù)補集與交集的定義進行計算即可.

解答 解:全集U={0,1,2,3,4,5},集合A={2,4},
B={x|x2-5x+4<0,x∈U}={x|1<x<4,x∈U}={2,3},
∴∁UA={0,1,3,5},
UB={0,1,4,5},
∴集合(∁UA)∩(∁UB)={0,1,5}.
故選:D.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x,y∈R,且(x+y)+i=3x+(x-y)i,則x=-1,y=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若直線2ax-by+2=0(a,b∈R)始終平分圓(x+1)2+(y-2)2=4的周長,則ab 的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C:y2=2px(p>0)與橢圓C':$\frac{x^2}{4}$+$\frac{{15{y^2}}}{16}$=1相交所得的弦長為2p.
(Ⅰ)求拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)A,B是C上異于原點O的兩個不同點,直線OA和OB的傾斜角分別為α和β,當(dāng)α,β變化且α+β為定值θ(tanθ=2)時,證明:直線AB恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在直線l:x+y-4=0任取一點M,過M且以$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的焦點為焦點作橢圓,則所作橢圓的長軸長的最小值為2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.命題“?x≥1,x>2”的否定形式是?x≥1,x≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足xf′(x)+2f(x)>0,則不等式(x+2015)2f(x+2015)<16f(4)的解集為( 。
A.{x|x>-2015}B.{x|x<-2015}C.{x|-2015<x<-2011}D.{x|-2011<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.計算sin105°-cos105°=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=asin3x+bx3+4(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2016)+f(-2016)+f′(2016)-f′(-2016)=( 。
A.2016B.2015C.8D.0

查看答案和解析>>

同步練習(xí)冊答案