5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}x,x>0\\{4^x},x≤0\end{array}$,則f[f(-2)]-16f[f(4)]=( 。
A.-3B.3C.-6D.6

分析 先利用分段函數(shù)的性質(zhì)求出f(-2),f(4),再求出f[f(-2)],f[f(4)],由此能求出f[f(-2)]-16f[f(4)]的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}x,x>0\\{4^x},x≤0\end{array}$,
∴f(-2)=4-2=$\frac{1}{16}$,
f[f(-2)]=f($\frac{1}{16}$)=$lo{g}_{\frac{1}{2}}\frac{1}{16}$=4,
f(4)=$lo{g}_{\frac{1}{2}}4$=-2,
f[f(4)]=4-2=$\frac{1}{16}$,
f[f(-2)]-16f[f(4)]=4-16×$\frac{1}{16}$=3.
故選:B.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.化簡:
(1)asin0°+bcos90°+ctan180°;
(2)-p2cos180°+q2sin90°-2pqcos0°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z=m2-1+(m2-m-2)i分別是:
①實(shí)數(shù)?
②虛數(shù)?
③純虛數(shù)?
(2)已知$\frac{m}{1+i}$=1-ni,(m、n∈R,i是虛數(shù)單位),求m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x-m|+|x-2|.
(1)當(dāng)m=1時(shí),求不等式f(x)≥3的解集;
(2)若不等式f(x)≥4-x對?x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若三角形三邊分別為AB=7,BC=5,AC=6,則$\overrightarrow{BA}•\overrightarrow{BC}$=( 。
A.19B.18C.-18D.-19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知正數(shù)x,y滿足x+2y=1,則$\frac{xy}{x+8y}$的最大值為$\frac{1}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若cos(α+$\frac{π}{2}$)=-$\frac{1}{2}$,α∈($\frac{π}{2}$,π),則cos(π-α)值為(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=sin(x+1)$\frac{π}{3}$-$\sqrt{3}$cos(x+1)$\frac{π}{3}$,則f(1)+f(2)+f(3)+…+f(2011)=(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在邊長為$5+\sqrt{2}$的正方形ABCD中,以A為圓心畫一個(gè)扇形,以O(shè)為圓心畫一個(gè)圓,M,N,K為切點(diǎn),以扇形為圓錐的側(cè)面,以圓O為圓錐底面,圍成一個(gè)圓錐,求圓錐的表面積與體積.

查看答案和解析>>

同步練習(xí)冊答案