5.已知復(fù)數(shù)z1=1+i,z2=3-2i,則復(fù)數(shù)$\frac{z_2}{z_1}$=( 。
A.$-\frac{1}{2}-\frac{5}{2}i$B.$-\frac{1}{2}+\frac{5}{2}i$C.$\frac{1}{2}-\frac{5}{2}i$D.$\frac{1}{2}+\frac{5}{2}i$

分析 直接把z1,z2代入復(fù)數(shù)$\frac{z_2}{z_1}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)求解即可得答案.

解答 解:z1=1+i,z2=3-2i,
則$\frac{z_2}{z_1}$=$\frac{3-2i}{1+i}$=$\frac{(3-2i)(1-i)}{(1+i)(1-i)}=\frac{1-5i}{2}=\frac{1}{2}-\frac{5}{2}i$,
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)y=xa,y=logbx的圖象如圖所示,則( 。
A.b>1>aB.b>a>1C.a>1>bD.a>b>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)由不等式$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}}\right.$表示的平面區(qū)域?yàn)锳,若直線kx-y+1=0(k∈R)平分A的面積,則實(shí)數(shù)k的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)A={x|x2+x-6=0},B={x|ax+1=0},滿足A?B,則a取值的集合是( 。
A.{$-\frac{1}{2},_{\;}^{\;}\frac{1}{3}$}B.{$-\frac{1}{2}$}C.{$\frac{1}{3}$}D.{$0,-\frac{1}{2},\frac{1}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖為由三棱柱切割而得到的幾何體的三視圖,則該幾何體的體積為( 。
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)f:A→B是A到B的一個(gè)映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(2x,x-y),則B中元素(2,-1)的原象是( 。
A.(1,2)B.(1,-2)C.(4,3)D.(4,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.?dāng)?shù)列{an}中,如果an=2n,那么這個(gè)數(shù)列是(  )
A.公差為2的等差數(shù)列B.公差為3的等差數(shù)列
C.首項(xiàng)為3的等比數(shù)列D.首項(xiàng)為1的等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=(3-x2)e-x的遞增區(qū)間為( 。
A.(-∞,0)B.(3,-1)C.(-∞,3)及(1,+∞)D.(-∞,-1)及(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知y=f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)≤f(2a-1),則實(shí)數(shù)a的取值范圍為(0,$\frac{2}{3}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案