10.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x-y+1≥0}\\{x+y-3≤0}\end{array}\right.$,則z=2x-y的最小值為-2.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求目標(biāo)函數(shù)z=2x-y的最小值.

解答 解:由z=2x-y,得y=2x-z,作出不等式對應(yīng)的可行域(陰影部分),
平移直線y=2x-z,由平移可知當(dāng)直線y=2x-z,
經(jīng)過點A時,直線y=2x-z的截距最大,此時z取得最小值,
由$\left\{\begin{array}{l}{y=0}\\{x-y+1=0}\end{array}\right.$,解得x=-1,y=0,
即A(-1,0),代入z=-2,
即目標(biāo)函數(shù)z=2x-y的最小值為-2,
故答案為:-2.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的焦點F1,F(xiàn)2,P為橢圓上的一點,已知PF1⊥PF2,則P到x軸的距離$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知整數(shù)對的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按規(guī)律,第600個數(shù)對為(5,31).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-1,g(x)=a|x-1|.
(Ⅰ)若關(guān)于x的方程|f(x)|=g(x)只有一個實數(shù)解,求實數(shù)a的取值范圍;
(Ⅱ)若當(dāng)x∈R時,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若a<0,求函數(shù)h(x)=f(x)+g(x)在[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知焦點在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點(1,$\frac{3}{2}$).
(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M,N,點P($\frac{1}{5}$,0),有|MP|=|NP|,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=$\frac{π}{8}$.
(1)求φ;
(2)求y=f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知若函數(shù)f(x)=x2+2(a-1)x+2
(1)當(dāng)a=2時,試證明f(x)在(0,+∞)上是增函數(shù);
(2)若f(f(2))=14,試求a的值;
(3)若函數(shù)f(x)在區(qū)間(-∞,4)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:?x∈R,2x=5,則¬p為(  )
A.?x∉R,2x≠5B.?x∈R,2x≠5C.?x∉R,2x≠5D.?x∈R,2x≠5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)是定義在[-2,2]上的增函數(shù),且f(1-m)<f(m),則實數(shù)m的取值范圍($\frac{1}{2}$,2].

查看答案和解析>>

同步練習(xí)冊答案