16.已知$\frac{sinα}{cosα}=2$,則4sin2α-3sinαcosα-5cos2α=1.

分析 利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:∵已知$\frac{sinα}{cosα}=2$=tanα,則4sin2α-3sinαcosα-5cos2α=$\frac{{4sin}^{2}α-3sinαcosα-{5cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{{4tan}^{2}α-3tanα-5}{{tan}^{2}α+1}$=$\frac{16-6-5}{4+1}$=1,
故答案為:1.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)集合U={1,2,3,4,5},M={1,2,5},N={2,3,5},則M∪(∁UN)=(  )
A.{1}B.{1,2,3,5}C.{1,2,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=x(2+x).
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并寫出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=2sinωx在區(qū)間$[-\frac{π}{4},\frac{π}{3}]$上的最小值為-2,則ω的取值范圍是(  )
A.$(-∞,-2]∪[\frac{3}{2},+∞)$B.$(-∞,-\frac{3}{2}]∪[2,+∞)$C.$(-∞,-\frac{9}{2}]∪[6,+∞)$D.$(-∞,-6]∪[\frac{9}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是單調(diào)遞減函數(shù),若$f({lnx})+f({ln\frac{1}{x}})-2f(1)<0$,則x的取值范圍是( 。
A.$({0,\frac{1}{e}})$B.$({\frac{1}{e},e})$C.(e,+∞)D.$({0,\frac{1}{e}})∪({e,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,已知c=13,cosA=$\frac{5}{13}$
(1)若a=36,求sinC的值
(2)若△ABC的面積為6,分別求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)$f(x)={(x-6)^0}+\sqrt{\frac{1}{x-3}}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x≠6,x≠3}B.{x|x>3}C.{x|x>6}D.{x|3<x<6或x>6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)m∈R,過(guò)定點(diǎn)A的動(dòng)直線x+my=0和過(guò)定點(diǎn)B的動(dòng)直線mx-y-m+3=0交于點(diǎn)P,若AB的中點(diǎn)為C,則|PC|=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(1)求△ABC的面積S.
(2)若b+c=6,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案