19.如圖,AB為⊙O的直徑,PA垂直于⊙O所在的平面,M為圓周上任意一點(diǎn),AN⊥PM,N為垂足.
(1)求證:AN⊥平面PBM;
(2)若AQ⊥PB,垂足為Q,求證:NQ⊥PB.

分析 (1)由PA⊥平面ABM得PA⊥BM,結(jié)合BM⊥AM得出BM⊥平面PAM,于是BM⊥AN,又AN⊥PM,得出AN⊥平面PBM;
(2)由AN⊥平面PBM得AN⊥PB,又PB⊥AQ得出PB⊥平面ANQ,于是NQ⊥PB.

解答 證明:(1)∵PA⊥平面ABM,BM?平面ABM,
∴PA⊥BM,
∵AB是⊙O的直徑,M在⊙O上,
∴BM⊥AM,
又AM,PA?平面PAM,PA∩AM=A,
∴BM⊥平面PAM,∵AN?平面PAM,
∴AN⊥BM,又AN⊥PM,PM,BM?平面PBM,PM∩BM=M,
∴AN⊥平面PBM.
(2)∵AN⊥平面PBM,PB?平面PBM,
∴AN⊥PB,又AQ⊥PB,AN,AQ?平面ANQ,AN∩AQ=A,
∴PB⊥平面ANQ.∵NQ?平面ANQ,
∴PB⊥NQ.

點(diǎn)評 本題考查了線面垂直的判定與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某校高三學(xué)生有兩部分組成,應(yīng)屆生與復(fù)讀生共2000學(xué)生,期末考試數(shù)學(xué)成績換算為100分的成績?nèi)鐖D所示,從高三的學(xué)生中,利用分層抽樣,抽取100名學(xué)生的成績繪制成頻率分布直方圖:
(1)若抽取的學(xué)生中,應(yīng)屆生與復(fù)讀生的比為9﹕1,確定高三應(yīng)屆生與復(fù)讀生的人數(shù);
(2)計(jì)算此次數(shù)學(xué)成績的平均分;
(3)若抽取的[80,90),[90,100]的學(xué)生中,應(yīng)屆生與復(fù)讀生的比例關(guān)系也是9﹕1,從抽取的[80,90),[90,100]兩段的復(fù)讀生中,選兩人進(jìn)行座談,設(shè)抽取的[80,90)的人數(shù)為隨機(jī)變量ξ,求ξ的分布列與期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={a|x2+2ax+4>0,不等式對x∈R恒成立},B={x|2<($\sqrt{2}$)x+k<4}
(1)若k=1,求A∪B;
(2)若A∩B=∅,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知O為坐標(biāo)原點(diǎn),函數(shù)y=sin$\frac{π}{2}$x與函數(shù)y=tan$\frac{π}{4}$x(x∈(0,4)的圖象交點(diǎn)為A,B,則$\overrightarrow{OA}$$•\overrightarrow{OB}$=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知各項(xiàng)均為正的等比數(shù)列{an},若a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{11}+{a}_{16}}{{a}_{10}+{a}_{15}}$等于(  )
A.1-$\sqrt{2}$B.1+$\sqrt{2}$C.3+2$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.正方形ABCD中,A(-2,1),B(3,4),若A、B、C、D順時(shí)針方向排列,那么C(6,,-1),D(1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=-$\frac{a}{π}$sinπx且f′(1)=2,則a的值為( 。
A.1B.2C.$\sqrt{2}$D.任意正數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{x}{\sqrt{1-{x}^{2}}}$的導(dǎo)函數(shù)為$\frac{\sqrt{1-{x}^{2}}}{(1-{x}^{2})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)Sn是公差不為0 的等差數(shù)列{an}的前n 項(xiàng)和,S1,S2,S4成等比數(shù)列,且${a_3}=-\frac{5}{2}$,則數(shù)列$\left\{{\frac{1}{{(2n+1){a_n}}}}\right\}$的前n 項(xiàng)和Tn=( 。
A.-$\frac{n}{2n+1}$B.$\frac{n}{2n+1}$C.-$\frac{2n}{2n+1}$D.$\frac{2n}{2n+1}$

查看答案和解析>>

同步練習(xí)冊答案