2.已知直線ax-by+2=0(a>0,b>0)過(guò)點(diǎn)(-1,1),則$\frac{1}{a}$+$\frac{2}$的最小值為$\frac{3}{2}+\sqrt{2}$.

分析 由題意可得a與b的關(guān)系式為:a+b=2.所以 $\frac{1}{a}$+$\frac{2}$=$\frac{1}{2}$(a+b)($\frac{1}{a}$+$\frac{2}$)展開(kāi)化簡(jiǎn),利用基本不等式求解即可..

解答 解:由題意可得:直線ax-by+2=0(a>0,b>0)過(guò)點(diǎn)(-1,1),
所以a+b=2.
所以 $\frac{1}{a}$+$\frac{2}$=$\frac{1}{2}$(a+b)($\frac{1}{a}$+$\frac{2}$)=$\frac{1}{2}$[3+$\frac{a}$+$\frac{2a}$]≥$\frac{1}{2}$[3+2$\sqrt{2}$]=$\frac{3}{2}+\sqrt{2}$,
當(dāng)且僅當(dāng)$\frac{a}$=$\frac{2a}$,a+b=2時(shí),即a=2$\sqrt{2}-2$,b=4-2$\sqrt{2}$時(shí)取等號(hào).
故答案為:$\frac{3}{2}+\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查直線過(guò)定點(diǎn)問(wèn)題和基本不等式的運(yùn)用.考查基礎(chǔ)知識(shí)的綜合運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知實(shí)數(shù)a>0,b>0,且a2+3b2=3,若$\sqrt{5}$a+b≤m恒成立.
(1)求m的最小值;
(2)若2|x-1|+|x|≥$\sqrt{5}$a+b對(duì)a>0,b>0恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在研究塞卡病毒(Zika virus)某種疫苗的過(guò)程中,為了研究小白鼠連續(xù)接種該種疫苗后出現(xiàn)Z癥狀的情況,做接種試驗(yàn).試驗(yàn)設(shè)計(jì)每天接種一次,連續(xù)接種3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)Z癥狀的概率為$\frac{1}{4}$,假設(shè)每次接種后當(dāng)天是否出現(xiàn)Z癥狀與上次接種無(wú)關(guān).
(Ⅰ)若出現(xiàn)Z癥狀即停止試驗(yàn),求試驗(yàn)至多持續(xù)一個(gè)接種周期的概率;
(Ⅱ)若在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次Z癥狀,則這個(gè)接種周期結(jié)束后終止試驗(yàn),試驗(yàn)至多持續(xù)3個(gè)周期.設(shè)接種試驗(yàn)持續(xù)的接種周期數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某空間幾何體的三視圖,若該幾何體的體積為20,則該幾何體的表面積為(  )
A.72B.78C.66D.62

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知 f(x)=$\frac{x}{2x+1}$(x>0),f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,則 fs(x)在[$\frac{1}{2}$,1]上的最小值是$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知某幾何體的正(主)視圖與側(cè)(左)視圖都是直角邊長(zhǎng)為1的等腰直角三角形,且體積為$\frac{1}{3}$,則該幾何體的俯視圖可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若執(zhí)行如圖的程序框圖,則輸出的a值是( 。
A.2B.-$\frac{1}{3}$C.-$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)如圖,在△ABC中,AD⊥AB,$\overrightarrow{BC}=\sqrt{3}\overrightarrow{BD},|\overrightarrow{AD}|=1$,求$\overrightarrow{AC}•\overrightarrow{AD}$的值
 (2)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的動(dòng)點(diǎn),求|$\overrightarrow{PA}$+3$\overrightarrow{PB}$|的最小值(本小題用兩種方法解答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.利用函數(shù)的單調(diào)性證明不等式:ex≥x+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案