考點(diǎn):正弦函數(shù)的圖象,兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)由已知及正弦函數(shù)的圖象和性質(zhì)即可求得函數(shù)f(x)的值域.
(Ⅱ)由已知即可求得sinθ,sin2θ,cos2θ的值,代入
f(2θ-)=
2(sin2θ•cos-cos2θ•sin)即可得解.
解答:
解:(Ⅰ)因?yàn)?span id="y26us3p" class="MathJye">f(x)=2sin(x-
),x∈R
所以函數(shù)f(x)的值域?yàn)閇-2,2]
(Ⅱ)因?yàn)?span id="6gfzxzn" class="MathJye">cosθ=
,θ∈(0,
)
所以
sinθ=,
所以
sin2θ=2sinθ•cosθ=,
cos2θ=cos2θ-sin2θ=所以
f(2θ-)=
2sin(2θ--)=
2sin(2θ-)=
2(sin2θ•cos-cos2θ•sin)=
(sin2θ-cos2θ)=
點(diǎn)評(píng):本題主要考查了兩角和與差的余弦函數(shù)公式的應(yīng)用,正弦函數(shù)的圖象和性質(zhì),屬于基本知識(shí)的考查.