18.已知?jiǎng)狱c(diǎn)M(x,y,z)到xOy平面的距離與點(diǎn)M到點(diǎn)(1,-1,2)的距離相等,求點(diǎn)M軌跡的方程.

分析 利用直接法,建立方程,即可求點(diǎn)M軌跡的方程.

解答 解:由題意,|z|=$\sqrt{(x-1)^{2}+(y+1)^{2}+(z-2)^{2}}$,
化簡可得(x-1)2+(y+1)-4z+4=0.

點(diǎn)評(píng) 本題主要考查空間軌跡問題,關(guān)鍵是利用空間任意兩點(diǎn)間的距離公式,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四邊形ABCD是菱形,PD⊥平面ABCD,PD∥BE,AD=PD=2BE=2,∠DAB=60°,點(diǎn)F為PA的中點(diǎn).
(1)求證:EF⊥平面PAD;
(2)求P到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖在三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,D是A1B1的中點(diǎn),側(cè)棱CC1⊥底面ABC
(1)求異面直線CB1與AC1所成角;
(2)求平面ADC1與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.正三棱柱ABC-A1B1C1中,所有底面邊長和側(cè)棱長均等于2,D為AC上一點(diǎn),且BD⊥DC1,求:
(1)異面直線AB1與BC1所成角的大;
(2)直線A1B與平面BDC1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線ρcosθ=2關(guān)于直線θ=$\frac{π}{4}$對(duì)稱的直線的極坐標(biāo)方程為ρsinθ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,圓C1的極坐標(biāo)方程是ρ2+2ρcosθ=0,圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數(shù)).
(1)求圓C1和圓C2的交點(diǎn)的極坐標(biāo);
(2)若直線l經(jīng)過圓C1和圓C2的一個(gè)交點(diǎn),且垂直于公共弦,求直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知⊙O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是⊙O的直徑.
(Ⅰ)求證:AC•BC=AD•AE;
(Ⅱ)過點(diǎn)C作⊙O的切線交BA的延長線于點(diǎn)F,若AF=3,CF=9,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.動(dòng)點(diǎn)P在橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,定點(diǎn)A(0,5),求AP的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案