分析 根據(jù)空間直線平面的垂直問題,得出棱錐的高,轉(zhuǎn)化頂點(diǎn),求解體積,補(bǔ)圖的正方體的外接球求解.
解答 解:取AC中點(diǎn)D,則SD⊥AC,DB⊥AC,
又∵SD⊥BD=D,∴AC⊥平面SDB,
∵SB?平面SBD,∴AC⊥SB,
又∵AM⊥SB,AM∩AC=A,
∴SB⊥平面SAC,
∴SA⊥SB,SC⊥SB,
根據(jù)對稱性可知SA⊥SC,從而可知SA,SB,SC兩兩垂直,
將其補(bǔ)為立方體,其棱長為2,
∴VS-ABC=SC-ASB=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$,其外接球即為立方體的外接球,半徑r=$\frac{\sqrt{3}}{2}$×$2=\sqrt{3}$,表面積S=4π×3=12π.
點(diǎn)評 本題考查了空間空間幾何體的性質(zhì),學(xué)生的空間思維能力,計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | t>$\frac{3}{4}$ | B. | t≤$\frac{3}{4}$ | C. | t>-$\frac{1}{12}$ | D. | t≤-$\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
日期 溫差 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com