15.設(shè)雙曲線$\frac{y^2}{9}$-$\frac{x^2}{b^2}$=1(b>0)的漸近線方程為3x±2y=0,則其離心率為( 。
A.$\frac{{\sqrt{13}}}{3}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}}}{2}$

分析 根據(jù)雙曲線$\frac{y^2}{9}$-$\frac{x^2}{b^2}$=1(b>0)的漸近線方程為3x±2y=0,確定a,b的關(guān)系,求出c,即可求出該雙曲線的離心率.

解答 解:∵雙曲線$\frac{y^2}{9}$-$\frac{x^2}{b^2}$=1(b>0)的漸近線方程為3x±2y=0,可得a=3,b=2,
∴c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{13}$,
∴雙曲線的離心率e=$\frac{c}{a}$=$\frac{\sqrt{13}}{3}$.
故選:A.

點評 本題考查雙曲線的幾何性質(zhì),考查學(xué)生的計算能力,確定a,b,c的關(guān)系是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=cos(x-$\frac{π}{3}$)(x∈[$\frac{π}{6}$,$\frac{2}{3}$π])的最大值是1,最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知i是虛數(shù)單位,則復(fù)數(shù)z=$\frac{1-i}{2i+1}$的共軛復(fù)數(shù)的模是(  )
A.$\frac{{2\sqrt{2}}}{5}$B.$\frac{{\sqrt{7}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y+1≥0\\ y≥-1\end{array}\right.$,則2x+y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知平面向量$\overrightarrow a$=(1,-2),2$\overrightarrow a$-$\overrightarrow b$=(-1,0),則|$\overrightarrow b}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示的幾何體中,ABC-A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A-C1D-C的余弦值為$\frac{{\sqrt{5}}}{5}$,求三棱錐C1-A1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.M是橢圓T:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上任意一點,F(xiàn)是橢圓T的右焦點,A為左頂點,B為上頂點,O為坐標(biāo)原點,已知|MF|的最大值為3+$\sqrt{5}$,最小值為3-$\sqrt{5}$.
(I)求橢圓T的標(biāo)準(zhǔn)方程;
(II)求△ABM的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.
(1)求證:BD1∥平面A1DE;
(2)求直線A1E與平面AD1E所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在長方體ABCD-A1B1C1D1中,AB=4,AD=AA1=3,M是線段B1D1的中點.
(1)求證:BM∥平面D1AC
(2)求B1到平面D1AC的距離.

查看答案和解析>>

同步練習(xí)冊答案