13.與⊙C1:x2+(y+1)2=25內(nèi)切且與⊙C2:x2+(y-2)2=1外切的動(dòng)圓圓心M的軌跡方程是( 。
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)B.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1(x≠0)C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(x≠3)D.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1(y≠3)

分析 設(shè)動(dòng)圓圓心M(x,y),半徑為r,則|MC1|=5-r,|MC2|=r+1,可得|MC1|+|MC2|=6>|C1C2|=4,利用橢圓的定義,即可求動(dòng)圓圓心M的軌跡方程.

解答 解:設(shè)動(dòng)圓圓心M的坐標(biāo)為(x,y),半徑為r,則|MC1|=5-r,|MC2|=r+1,
∴|MC1|+|MC2|=6>|C1C2|=4,
由橢圓的定義知,點(diǎn)M的軌跡是以C1、C2為焦點(diǎn)的橢圓,且2a=6,a=3,
∴b=$\sqrt{5}$,
∴橢圓的方程為$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1,
又y=3時(shí),M在⊙C2上,∴y≠3,
∴動(dòng)圓圓心M的軌跡方程是$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1(y≠3).
故選:D.

點(diǎn)評(píng) 本題考查圓與圓的位置關(guān)系,考查橢圓的定義,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{3}}}{3}$,點(diǎn)M在橢圓上,且滿足MF2⊥x軸,$|{M{F_1}}|=\frac{{4\sqrt{3}}}{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線y=kx+2交橢圓于A,B兩點(diǎn),求△ABO(O為坐標(biāo)原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知等差數(shù)列{an}的前三項(xiàng)為a-1,4,2a,記前n項(xiàng)和為Sn
(1)若Sk=30,求a和k的值;
(2)設(shè)bn=$\frac{S_n}{n}$,求b1+b2+b3+…bn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)a為實(shí)數(shù),給出命題p:函數(shù)f(x)=(a-$\frac{3}{2}$)x是R上的減函數(shù),命題q:關(guān)于x的不等式($\frac{1}{2}$)|x-1|≥a的解集為∅.
(1)若p為真命題,求a的取值范圍;
(2)若q為真命題,求a的取值范圍;
(3)若“p且q”為假命題,“p或q”為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.?dāng)?shù)列{an}中,an=$\frac{1}{{{a_{n-1}}}}$+1,若a1=1,則a2=2;若a4=4,則a2=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,F(xiàn)為C的右焦點(diǎn),A(0,-2),直線FA的斜率為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求C的方程;
(Ⅱ)設(shè)E(x0,y0)是C上一點(diǎn),從坐標(biāo)原點(diǎn)O向圓E:(x-x02+(y-y02=3作兩條切線,分別與C交于P,Q兩點(diǎn),直線OP,OQ的斜率分別是k1,k2,求證:
(i)k1•k2=-$\frac{1}{3}$;
(ii)|OP|2+|OQ|2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知命題p:a-|x|-$\frac{1}{a}$>0(a>1),命題q:b${\;}^{l{g}^{{x}^{2}}}$>1(0<b<1),那么q是p的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(x)是定義在R內(nèi)的以6為周期的偶函數(shù),若f(1)<1,f(11)=$\frac{2a-3}{a+1}$,則實(shí)數(shù)a的取值范圍為( 。
A.(-1,4)B.(-2,1)C.(-1,O)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.隨機(jī)變量X~N(0,22),且P(-2<X≤0)=a,則P(X≤-2)=0.5-a.

查看答案和解析>>

同步練習(xí)冊(cè)答案