【題目】設(shè)函數(shù),若存在(其中

1)求實(shí)數(shù)的取值范圍,

2)證明:.

【答案】(1)(2)詳見(jiàn)解析

【解析】

(1)先利用導(dǎo)數(shù)的符號(hào)討論函數(shù)的單調(diào)性,根據(jù)題設(shè)條件可得函數(shù)的最大值為正,再分兩種情況討論,前者無(wú)兩個(gè)不同的零點(diǎn),后者可利用零點(diǎn)存在定理證明函數(shù)有兩個(gè)零點(diǎn).

(2)根據(jù)(1)可把要證明的不等式轉(zhuǎn)化為證明,根據(jù)函數(shù)的單調(diào)性及可把前者轉(zhuǎn)為 構(gòu)建新函數(shù)可證明該不等式.

解:(1)令,則

時(shí),時(shí);當(dāng),,

遞增,遞減,且,

由題設(shè),有兩個(gè)不同的零點(diǎn),故.

,則當(dāng)時(shí),,故無(wú)零點(diǎn);

遞增,故上至多有一個(gè)零點(diǎn),故不符合;

,則,,

考慮,因?yàn)?/span>,故

上的增函數(shù),故,

遞增,遞減,且,結(jié)合零點(diǎn)存在定理可知有兩個(gè)不同的零點(diǎn),故.

2)由(1)知:

要證:成立,只需證:,

遞增,故只需證:

即證.

只需證:,即證:.

,

上單調(diào)遞減,.證畢

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,點(diǎn)分別是,的中點(diǎn),則下列說(shuō)法正確的是( )

A. B. 所成角為

C. 平面 D. 與平面所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市國(guó)慶大酬賓,購(gòu)物滿100元可參加一次游戲抽獎(jiǎng)活動(dòng),游戲抽獎(jiǎng)規(guī)則如下:顧客將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器正上方的入口處,小球自由落下過(guò)程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋得獎(jiǎng)金4元,落入B袋得獎(jiǎng)金8元,已知小球每次遇到黑色障礙物時(shí),向左向右下落的概率都為.已知李女士當(dāng)天在該超市購(gòu)物消費(fèi)128元,按照活動(dòng)要求,李女士的活動(dòng)獎(jiǎng)金期望值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①命題,則的否命題為,則;

的必要不充分條件;

命題,使得的否定是:,均有

④命題,則的逆否命題為真命題

其中所有正確命題的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng)(總分100分),在成績(jī)統(tǒng)計(jì)分析中,抽取12名學(xué)生的成績(jī)以莖葉圖形式表示如圖,學(xué)校規(guī)定測(cè)試成績(jī)低于87分的為未達(dá)標(biāo),分?jǐn)?shù)不低于87分的為達(dá)標(biāo)”.

1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);

2)在這12名學(xué)生中從測(cè)試成績(jī)介于80~90之間的學(xué)生中任選2人,求至少有1達(dá)標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①越小,XY有關(guān)聯(lián)的可信度越小;②若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的值越接近于1;“若,則類比推出,“若,則;④命題“有些有理數(shù)是無(wú)限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無(wú)限循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是使用了“三段論”,推理形式錯(cuò)誤.其中說(shuō)法正確的有( )個(gè)

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,平面,,,,.

1)求異面直線所成角的余弦值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中放有大小和形狀相同而顏色互不相同的小球若干個(gè), 其中標(biāo)號(hào)為0的小球1個(gè), 標(biāo)號(hào)為1的小球1個(gè), 標(biāo)號(hào)為2的小球2個(gè), 從袋子中不放回地隨機(jī)抽取2個(gè)小球, 記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.

(1) 記事件表示“”, 求事件的概率

(2) 在區(qū)間內(nèi)任取2個(gè)實(shí)數(shù), 記的最大值為,求事件”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線,(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)縮短為原來(lái)的后得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。

1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;

2)設(shè)直線l與曲線交于不同的兩點(diǎn)A,B,點(diǎn)M為拋物線的焦點(diǎn),求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案