【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系.已知曲線C1 (t為參數(shù)),C2 (θ為參數(shù)).
(1)化C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應(yīng)的參數(shù)為t= ,Q為C2上的動點,求PQ中點M到直線C3:ρ(cosθ﹣2sinθ)=7距離的最小值.

【答案】
(1)解:曲線C1 (t為參數(shù)),化為(x+4)2+(y﹣3)2=1,

∴C1為圓心是(﹣4,3),半徑是1的圓.

C2 (θ為參數(shù)),化為

C2為中心是坐標原點,焦點在x軸上,長半軸長是8,短半軸長是3的橢圓.


(2)解:當t= 時,P(﹣4,4),Q(8cosθ,3sinθ),故M ,

直線C3:ρ(cosθ﹣2sinθ)=7化為x﹣2y=7,

M到C3的距離d= = |5sin(θ+φ)+13|,

從而當cossinθ= ,sinθ=﹣ 時,d取得最小值


【解析】(1)曲線C1 (t為參數(shù)),利用sin2t+cos2t=1即可化為普通方程;C2 (θ為參數(shù)),利用cos2θ+sin2θ=1化為普通方程.(2)當t= 時,P(﹣4,4),Q(8cosθ,3sinθ),故M ,直線C3:ρ(cosθ﹣2sinθ)=7化為x﹣2y=7,利用點到直線的距離公式與三角函數(shù)的單調(diào)性即可得出.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知面積為S的凸四邊形中,四條邊長分別記為a1 , a2 , a3 , a4 , 點P為四邊形內(nèi)任意一點,且點P到四邊的距離分別記為h1 , h2 , h3 , h4 , 若 = = = =k,則h1+2h2+3h3+4h4= 類比以上性質(zhì),體積為y的三棱錐的每個面的面積分別記為Sl , S2 , S3 , S4 , 此三棱錐內(nèi)任一點Q到每個面的距離分別為H1 , H2 , H3 , H4 , 若 = = = =K,則H1+2H2+3H3+4H4=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x∈R|ax2﹣3x+2=0,a∈R}.
(1)若A是空集,求a的取值范圍;
(2)若A中只有一個元素,求a的值,并把這個元素寫出來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為(其中t為參數(shù)).現(xiàn)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(Ⅰ) 寫出直線的普通方程和曲線C 的直角坐標方程;

(Ⅱ) 過點且與直線平行的直線交曲線C, 兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足條件,且函數(shù)是偶函數(shù),當時, ;當時, 的最小值為,則=( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合 ,集合
(1)求A,B;
(2)求(RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)求ξ的分布列和數(shù)學(xué)期望;
(3)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x+ ),g(x)= (x﹣ ).
(1)求函數(shù)h(x)=f(x)+2g(x)的零點;
(2)求函數(shù)F(x)=[f(x)]2n﹣[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:a,b,c∈(﹣∞,0),求證:a+ ,b+ ,c+ 中至少有一個不大于﹣2.

查看答案和解析>>

同步練習冊答案