18.雙曲線$\frac{x^2}{9}-{y^2}=1$的實軸長為6.

分析 直接利用雙曲線方程求解即可.

解答 解:雙曲線$\frac{x^2}{9}-{y^2}=1$的實半軸長為a=3,所以雙曲線的實軸長為:6.
故答案為:6.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)點P是曲線y=x3-$\sqrt{3}$x+$\frac{2}{3}$上的任意一點,在P點處切線傾斜角a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象與y軸交于點(0,1),它在y軸右側(cè)的得一個最高點和最低點的坐標(biāo)分別為(x0,2)、(x0+3π,-2).
(1)求f(x)的解析式;
(2)將y=f(x)圖象上所有點的橫坐標(biāo)縮短到原來的$\frac{1}{3}$(縱坐標(biāo)不變),然后將所得圖象按向右平移$\frac{π}{3}$,得到函數(shù)y=g(x)的圖象,寫出函數(shù)y=g(x)的解析式,并用列表作圖的方法畫出y=g(x)在長度為一個周期的閉區(qū)間上的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在(x-1)n(n∈N+)的二項展開式中,若只有第4項的二項式系數(shù)最大,則${({2\sqrt{x}-\frac{1}{{\sqrt{x}}}})^n}$的二項展開式中的常數(shù)項為( 。
A.960B.-160C.-560D.-960

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{1}{3}+2π$B.$\frac{13}{6}π$C.$\frac{7π}{3}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.雙曲線Γ中心在坐標(biāo)原點,焦點在坐標(biāo)軸上,又Γ的實軸長為4,且一條漸近線為y=2x,求雙曲線Γ的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.等差數(shù)列{an}的前n項和記為Sn,已知a10=30,a20=50.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求S10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x∈N|ex<9},其中e為自然對數(shù)的底數(shù),e≈2.718281828,集合B={x|0<x<2},則A∩(∁RB)=( 。
A.{0}B.{0,1}C.{2}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)0<a<1,函數(shù)y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.

查看答案和解析>>

同步練習(xí)冊答案