分析 (1)由平面ADEF⊥平面ABCD,ED⊥AD,利用面面垂直的性質(zhì)定理可得:ED⊥平面ABCD,因此AB⊥ED.又AD=2,AB=1,A=60°,可得AB⊥BD.即可證明AB⊥平面EBD,于是平面ABE⊥平面EBD.
(2)由(1)得AD⊥DE,AB⊥BE,可得三棱錐A-BDE的外接球的球心為線段AE的中點(diǎn).再利用球的體積計(jì)算公式與三棱錐的體積計(jì)算公式即可得出.
解答 (1)證明:因?yàn)槠矫鍭DEF⊥平面ABCD,
平面ADEF∩平面ABCD=AD,ED⊥AD,ED?平面ADEF,
∴ED⊥平面ABCD,
∵AB?平面ABCD,∴AB⊥ED,
又∵AD=2,AB=1,A=60°,∴AB⊥BD.
又BD∩ED=D,BD,ED?平面EBD,
∴AB⊥平面EBD,
又AB?平面ABE,所以平面ABE⊥平面EBD.
(2)解:由(1)得AD⊥DE,AB⊥BE,所以三棱錐A-BDE的外接球的球心為線段AE的中點(diǎn).
∴$\frac{4}{3}•π•{({\frac{AE}{2}})^3}=\frac{{8\sqrt{2}π}}{3}$,解得$AE=2\sqrt{2},AD=ED=2,AB=AF=1$,
∴${V_{A-BEF}}={V_{B-AEF}}=\frac{1}{3}×\frac{1}{2}×1×2×\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{6}$.
點(diǎn)評(píng) 本題考查了線面面面垂直的判定與性質(zhì)定理、直角三角形的性質(zhì)、球的體積計(jì)算公式與三棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2-\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $2+\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,+∞) | B. | (-2,0) | C. | (-1,0) | D. | (-2,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | z的實(shí)部為1 | B. | |z|=2 | ||
C. | z的虛部為1 | D. | z的共軛復(fù)數(shù)為-1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com