9.已知集合M={x|-1<x<1},$N=\left\{{x|\frac{x}{x-1}≤0}\right\}$,則M∩N=( 。
A.{x|0≤x<1}B.{x|0<x<1}C.{x|x≥0}D.{x|-1<x≤0}

分析 求出N中不等式的解集確定出N,找出M與N的交集即可.

解答 解:由N中不等式變形得:x(x-1)≤0,且x≠1,
解得:0≤x<1,即N={x|0≤x<1},
∵M={x|-1<x<1},
∴M∩N={x|0≤x<1},
故選:A.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和為Sn,a1=1,a2=3,a3=5且(2n+1)Sn+1-(2n+5)Sn=An+B,n∈N*,其中A,B為常數(shù).
(1)求A,B的值;
(2)證明:數(shù)列{an}為等差數(shù)列;
(3)數(shù)列{an}中是否存在兩項am、ak(m,k∈N*),使得${a}_{k}^{4}$-2ak+22=${a}_{m}^{2}$,如果存在,求出所有的k和m,如果存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.m∈R,函數(shù)f(x)=mx-lnx+1.
(1)當m=1時,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)將函數(shù)f(x)的圖象向下平移1個單位后得到g(x)的圖象,且x1=$\sqrt{e}$(e為自然對數(shù)的底數(shù))和x2是函數(shù)g(x)的兩個不同的零點,求m的值并證明:x2>e$\sqrt{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.${(x-\frac{2}{x^2})^6}$展開式中的常數(shù)項為( 。
A.60B.-60C.30D.-30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={1,2,3},B={2,3,4,5},全集U={1,2,3,4,5,6},則∁U(A∩B)=( 。
A.{2,3}B.{1,4,5}C.{1,4,5,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)的定義域D,如果存在正實數(shù)m,使得對任意x∈D,都有f(x+m)>f(x),則稱f(x)為D上的“m型增函數(shù)”.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)=|x-a|-a(a∈R).若f(x)為R上的“20型增函數(shù)”,則實數(shù)a的取值范圍是(  )
A.a>0B.a<5C.a<10D.a<20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在△ABC中,點D在BC邊上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.
(1)求sin∠C的值;
(2)若BD=5,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列說法中正確的是( 。
A.若a>b,則ac2>bc2
B.若x≠0,則x+$\frac{4}{x}$的最小值為4
C.“φ=$\frac{π}{2}$”是函數(shù)y=sin(x+φ)為偶函數(shù)“的充要條件
D.命題“?x>0,x-lnx>0”的否定是“?x0>0,x0-lnx0≤0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)公差不為零的等差數(shù)列{an}的前n項和為Sn,若a4=2(a2+a3),則$\frac{{S}_{2}}{{S}_{4}}$=(  )
A.-$\frac{1}{2}$B.$\frac{14}{5}$C.7D.14

查看答案和解析>>

同步練習冊答案