6.?dāng)?shù)列{an}的通項(xiàng)公式an=n2-2λn+1,若數(shù)列{an}為遞增數(shù)列,則λ的取值范圍是( 。
A.(-∞,1)B.(-∞,1]C.$(-∞,\frac{3}{2})$D.$(-∞,\frac{3}{2}]$

分析 數(shù)列an=n2-2λn+1(n∈N*)為單調(diào)遞增數(shù)列,可得an<an+1對(duì)于?n∈N*都成立,化簡(jiǎn)解出即可.

解答 解:∵數(shù)列an=n2-2λn+1(n∈N*)為單調(diào)遞增數(shù)列,
∴an<an+1對(duì)于?n∈N*都成立;
∴n2-2λn+1<(n+1)2-2λ(n+1)+1,
∴λ<$\frac{3}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a∈R,則“a=4是“直線l1:ax+8y-3=0與直線l2:2x+ay-a=0平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{aelnx}{x}$,g(x)=-$\frac{1}{2}$x+a+e(e為自然對(duì)數(shù)的底數(shù),a∈R且a≠0).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線過點(diǎn)(0,-2e),求a的值;
(2)若關(guān)于x的方程f(x)-g(x)=0在區(qū)間[$\frac{1}{e}$,+∞)上有且只有兩個(gè)實(shí)數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=ex+kx-lnx在區(qū)間(1,+∞)單調(diào)遞增,則k的取值范圍是(  )
A.(-∞,-2+e]B.(-∞,-1+e]C.[2-e,+∞)D.[1-e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.判斷下列命題的為真命題.( 。
A.若a>b,c>d,則ac>bdB.若a>b>0,c>d>0,則$\frac{a}{c}$>$\fraciui2o2i$
C.若a>b,c<d,則a-c>b-dD.若a>b,則an>bn,$\root{n}{a}$>$\root{n}$(n∈N+且n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知e為自然對(duì)數(shù)的底數(shù),若對(duì)任意的x∈[0,1],總存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,則實(shí)數(shù)a的取值范圍是$(1+\frac{1}{e},e]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)=x+sinx,(x∈R),則下列說法錯(cuò)誤的是( 。
A.f(x)是奇函數(shù)B.f(x)在R上存在最值C.f(x)的值域?yàn)镽D.f(x)不是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)i是虛數(shù)單位,若復(fù)數(shù)z=$\frac{15-5i}{(2+i)^{2}}$,且ω=z2+3$\overline{z}$-1,求ω在復(fù)平面中所對(duì)應(yīng)的點(diǎn)的坐標(biāo);
(2)i是虛數(shù)單位,若復(fù)數(shù)z滿足方程z•$\overline{z}$-2zi=1+2i,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-∞,-$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案