圓錐的底面半徑為10cm,高為20
2
cm,△SAB為軸截面,點(diǎn)C位母線SB中點(diǎn),一動(dòng)點(diǎn)從點(diǎn)A出發(fā)在側(cè)面上運(yùn)動(dòng)到點(diǎn)C,求最短路程.
考點(diǎn):多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題
專題:空間位置關(guān)系與距離
分析:將圓錐側(cè)面展開(kāi),進(jìn)而根據(jù)平面上兩點(diǎn)之間的距離,線段最短,求出最短路程.
解答: 解:∵圓錐的底面半徑為10cm,高為20
2
cm,
故圓錐的母線長(zhǎng)l=
102+(20
2
)2
=30cm,
故圓錐側(cè)面展開(kāi)圖的圓心角α滿足:
α
360°
=
10
30
,
故α=120°,
如下圖所示:

則AC的長(zhǎng)度即為所求最短路程,
連接AB,可得△SAB為邊長(zhǎng)為30cm的等邊三角形,
故AC=
3
2
×30
=15
3
cm,
故從點(diǎn)A出發(fā)在側(cè)面上運(yùn)動(dòng)到點(diǎn)C的最短路程為15
3
cm.
點(diǎn)評(píng):考查圓錐側(cè)面展開(kāi)圖中兩點(diǎn)間距離的求法;把立體幾何轉(zhuǎn)化為平面幾何來(lái)求是解決本題的突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

老師在班級(jí)50名學(xué)生中,依次抽取班號(hào)為4,14,24,34,44的學(xué)生進(jìn)行作業(yè)檢查,老師運(yùn)用的抽樣方法是( 。
A、隨機(jī)數(shù)法B、抽簽法
C、系統(tǒng)抽樣D、以上都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x∈R|-3≤x≤4},B={x∈R|log2x≥1},則A∩B=( 。
A、[4,+∞)
B、(4,+∞)
C、[2,4)
D、[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)(4,0)到其漸近線的距離為2
3
,則雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
x-1
x+1
,則f(x)+f(
1
x
)等于( 。
A、
1-x
x
B、
1
x
C、0
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司試銷某種“上海世博會(huì)”紀(jì)念品,每件按30元銷售,可獲利50%,設(shè)每件紀(jì)念品的成本為a元.
(1)試求a的值;
(2)公司在試銷過(guò)程中進(jìn)行了市場(chǎng)調(diào)查,發(fā)現(xiàn)銷售量y(件)與每件銷售x(元)滿足關(guān)系y=-10x+800.設(shè)每天銷售利潤(rùn)為W(元),求每天銷售利潤(rùn)W(元)與每件銷售x(元)之間的函數(shù)解析式;當(dāng)每件售價(jià)為多少時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
log
1
2
x
x≥1
exx<1
的值域?yàn)?div id="vbf55ko" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四邊形ABCD中,AB=CD,CB=CD,AC與BD相交于O點(diǎn),OC=OA,若E是CD上任意一點(diǎn),連接BE交AC于點(diǎn)F,連接DF.
(1)證明:△CBF≌△CDF;
(2)請(qǐng)你添加一個(gè)條件,使得∠EFD=∠BAD,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合P={x|0≤x≤4},集合N={y|0≤y≤2},下列從P到Q的各對(duì)應(yīng)關(guān)系f不是函數(shù)的是(  )
A、f:x→y=
1
2
x
B、f:x→y=
1
3
x
C、f:x→y=
2
3
x
D、f:x→y=
x

查看答案和解析>>

同步練習(xí)冊(cè)答案