【題目】下列說(shuō)法中,正確的序號(hào)是_________.
① 的圖象與的圖象關(guān)于軸對(duì)稱;
② 若,則的值為1;
③ 若, 則 ;
④ 把函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得圖象的一條對(duì)稱軸方程為;
⑤ 在鈍角中,,則;
⑥ .
【答案】②③⑤
【解析】
利用三角函數(shù)的圖象性質(zhì)逐一判斷即可.
①為偶函數(shù),為奇函數(shù),顯然不關(guān)于軸對(duì)稱,錯(cuò)誤;
②,兩邊平方可得,所以或
,故,正確;
③因?yàn)?/span>0<θ,所以0<sinθ<θ<,所以cos(sinθ)>cosθ,令x=cosθ,所以cosθ>sin(cosθ),故:cos(sinθ)>sin(cosθ),正確;
④把函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,
得到,當(dāng)時(shí),,故不是對(duì)稱軸,錯(cuò)誤;
⑤在鈍角中,,∴,即,,正確;
⑥又
∴,錯(cuò)誤.
故答案為:②③⑤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線l1 , l2分別是函數(shù)f(x)= 圖象上點(diǎn)P1 , P2處的切線,l1與l2垂直相交于點(diǎn)P,且l1 , l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是( 。
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,實(shí)數(shù)x1,x2滿足x1∈(a-1,a),x2∈(a+1,a+2).
(Ⅰ)若a<-,求證:f(x1)>f(x2);
(Ⅱ)若f(x1)=f(x2)=0,求b-2a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中實(shí)數(shù)a≠0.
(1)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)y=f(x)與y=g(x)的圖象只有一個(gè)公共點(diǎn)且g(x)存在最小值時(shí),記g(x)的最小值為h(a),求h(a)的值域;
(3)若f(x)與g(x)在區(qū)間(a,a+2)內(nèi)均為增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足 ,Sn是{an}的前n項(xiàng)和,則S40=( )
A.880
B.900
C.440
D.450
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在直二面角中,四邊形是邊長(zhǎng)為的正方形,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段(不包含端點(diǎn))上是否存在點(diǎn),使得與平面所成的角為;若存在,寫出的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 為圓的直徑,點(diǎn)在圓上, ,矩形所在的平面和圓所在的平面互相垂直,且.
(1)求證:平面平面;
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>R的函數(shù)f(x)=是奇函數(shù).
(1)求b的值,判斷并用定義法證明f(x)在R上的單調(diào)性;
(2)解不等式f(2x+1)+f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,點(diǎn)D是AB的中點(diǎn).求證:
(1)AC⊥BC1;
(2)AC1∥平面B1CD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com