7.函數(shù)y=$\frac{|{x}^{2}-1|}{x-1}$的圖象是( 。
A.B.
C.D.

分析 去絕對值符號得出分段函數(shù)的解析式,得出函數(shù)圖象.

解答 解:函數(shù)的定義域為{x|x≠1}.
當x2-1≥0即x≤-1或x>1時,y=$\frac{{x}^{2}-1}{x-1}=x+1$,
當x2-1<0即-1<x<1時,y=$\frac{1-{x}^{2}}{x-1}$=-x-1.
故選A.

點評 本題考查了基本初等函數(shù),分段函數(shù)的圖象,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知{an}為等差數(shù)列,則下列各式一定成立的是( 。
A.a5=$\frac{5}{9}$a2+$\frac{4}{9}$a9B.a7=$\frac{7}{11}$a3+$\frac{4}{11}$a14C.a6=$\frac{2}{3}$a5+$\frac{4}{3}$a8D.a8=$\frac{2}{9}$a3+$\frac{7}{9}$a10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知a1,a2,a3,…,an,…構成一個等差數(shù)列,其前n項和為Sn=n2,設bn=$\frac{{a}_{n}}{{3}^{n}}$,記{bn}的前n項和為Tn
(1)求數(shù)列{an}的通項公式;
(2)證明:Tn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.用列舉法表示下列各集合:
(1)小于5的所有正整數(shù)組成的集合;
(2)絕對值小于4的所有整數(shù)組成的集合;
(3)方程3x-5=1的解集;
(4)方程x2+3x-4=0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.A={x|x2+mx-2=0,x∈R},B={x|x2-x-n=0,x∈R},若A∪B={-2,0,1},則m、n的值m=1,n=0(隱含條件,韋達定理排除)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.化簡$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{({n+1)}^{2}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.“$\left\{\begin{array}{l}{{x}_{1}>3}\\{{x}_{2}>3}\end{array}\right.$”是“$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}>6}\\{{x}_{1}{x}_{2}>9}\end{array}\right.$”成立的( 。
A.充分非必要條件B.必要非充分條件
C.非充分非必要條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知全集U={1,2,3,4,5},集合A={x|x2-5x+6=0},集合B={x|x2-5x+4=0},求∁UA,∁UB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{{m}^{2}}$=1(0<m<4),如果直線y=$\frac{\sqrt{2}}{2}$x與橢圓的一個交點在x軸上的射影恰為橢圓的右焦點,則m的值為2$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案