A. | ①② | B. | ①③ | C. | ②④ | D. | ③④ |
分析 根據(jù)題設(shè)條件,分別舉出反例,說(shuō)明①和②都是錯(cuò)誤的;同時(shí)證明③和④是正確的.
解答 解:在①中:在[1,3]上,f(2)=f( $\frac{x+4-x}{2}$)≤$\frac{1}{2}$[f(x)+f(4-x)],
∴$\left\{\begin{array}{l}{f(x)+f(4-x)≥2}\\{f(x)≤f(x)_{max}=f(2)=1}\\{f(4-x)≤f(x)_{max}=f(2)=1}\end{array}\right.$,
故f(x)=1,
∴對(duì)任意的x1,x2∈[1,3],f(x)=1,
故①成立;
在②中,對(duì)任意x1,x2,x3,x4∈[1,3],
有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)=f( $\frac{\frac{1}{2}({x}_{1}+{x}_{2})+\frac{1}{2}({x}_{3}+{x}_{4})}{2}$)
≤$\frac{1}{2}$[f( $\frac{{x}_{1}+{x}_{2}}{2}$)+f( $\frac{{x}_{3}+{x}_{4}}{2}$ )]
≤$\frac{1}{2}$[$\frac{1}{2}$(f(x1 )+f(x2))+$\frac{1}{2}$(f(x3)+f(x4))]
=$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)],
∴f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)].
故②成立.
在③中,反例:f(x)=$\left\{\begin{array}{l}{({\frac{1}{3})}^{x},1≤x<3}\\{2,x=3}\end{array}\right.$在[1,3]上滿足性質(zhì)P,
但f(x)在[1,3]上不是連續(xù)函數(shù),故③不成立;
在④中,反例:f(x)=-x在[1,3]上滿足性質(zhì)P,但f(x2)=-x2在[1,$\sqrt{3}$]上不滿足性質(zhì)P,
故④不成立;
故選:A.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)為函數(shù)定義的理解,說(shuō)明一個(gè)結(jié)論錯(cuò)誤時(shí),只需舉出反例即可.說(shuō)明一個(gè)結(jié)論正確時(shí),要證明對(duì)所有的情況都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ | B. | $\sqrt{2}$-1 | C. | $\sqrt{2}$+1 | D. | $\frac{\sqrt{6}+\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 128 | B. | ±128 | C. | 64 | D. | ±64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,0) | B. | (-2,-1) | C. | (-$\frac{5}{4}$,0) | D. | (-$\frac{5}{4}$,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com