18.已知箱中有5個(gè)粉球和4個(gè)黑球,且規(guī)定:取出一個(gè)粉球得2分,取出一個(gè)黑球得1分.現(xiàn)從該箱中任取(無(wú)放回,且每球取得的機(jī)會(huì)均等)3個(gè)球,記隨機(jī)變量X為取出此3球所得分?jǐn)?shù)之和.
(1)求得分X的分布列;
(2)求得分大于4分的概率.

分析 (1)由題意X=3,4,5,6,分別求出相應(yīng)的概率,由此能求出X的分布列.
(2)得分大于4分的概率P(X>4)=P(X=5)+P(X=6),由此能求出得分大于4分的概率.

解答 解:(1)箱中有5個(gè)粉球和4個(gè)黑球,且規(guī)定:取出一個(gè)粉球得2分,取出一個(gè)黑球得1分.
現(xiàn)從該箱中任。o(wú)放回,且每球取得的機(jī)會(huì)均等)3個(gè)球,
記隨機(jī)變量X為取出此3球所得分?jǐn)?shù)之和,則X=3,4,5,6,
P(X=3)=$\frac{{C}_{4}^{3}}{{C}_{9}^{3}}$=$\frac{1}{21}$,
P(X=4)=$\frac{{C}_{4}^{2}{C}_{5}^{1}}{{C}_{9}^{3}}$=$\frac{5}{14}$,
P(X=5)=$\frac{{C}_{4}^{3}{C}_{5}^{2}}{{C}_{9}^{3}}$=$\frac{10}{21}$,
P(X=6)=$\frac{{C}_{5}^{3}}{{C}_{9}^{3}}$=$\frac{5}{42}$,
∴X的分布列為:

X3456
P$\frac{1}{21}$$\frac{5}{14}$$\frac{10}{21}$$\frac{5}{42}$
(2)得分大于4分的概率$P(X>4)=P(X=5)+P(X=6)=\frac{25}{42}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.雙“十一”結(jié)束之后,某網(wǎng)站針對(duì)購(gòu)物情況進(jìn)行了調(diào)查,參與調(diào)查的人主要集中在[20,50]歲之間,若規(guī)定:購(gòu)物600(含600元)以下者,稱(chēng)為“理智購(gòu)物”,購(gòu)物超過(guò)600元者被網(wǎng)友形象的稱(chēng)為“剁手黨”,得到如下統(tǒng)計(jì)表:
分組編號(hào)年齡分組球迷所占比例
1[20,25)10000.5
2[25,30)18000.6
3[30,35)12000.5
4[35,40)a0.4
5[40,45)3000.2
6[45,50]2000.1
若參與調(diào)查的“理智購(gòu)物”總?cè)藬?shù)為7720人.
(1)求a的值;
(2)從年齡在[20,35)的“剁手黨”中按照年齡區(qū)間分層抽樣的方法抽取20人;
①?gòu)倪@20人中隨機(jī)抽取2人,求這2人恰好屬于同一年齡區(qū)間的概率;
②從這20人中隨機(jī)抽取2人,用ζ表示年齡在[20,25)之間的人數(shù),求ξ的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知二次函數(shù)f(x)=ax2+bx滿(mǎn)足:①f(2)=0,②關(guān)于x的方程f(x)=x有兩個(gè)相等的實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[0,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}$(an+$\frac{1}{a_n}$).
(1)試求a1、a2、a3
(2)猜想通項(xiàng)an,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.第47屆聯(lián)合國(guó)大會(huì)于1993年1月18日通過(guò)193號(hào)決議,確定自1993年起,每年的3月22日為“世界水日”,依次推動(dòng)對(duì)水資源進(jìn)行進(jìn)行綜合性統(tǒng)籌規(guī)劃和管理,加強(qiáng)水資源保護(hù),解決日益嚴(yán)重的水問(wèn)題.某研究機(jī)構(gòu)為了了解各年齡層的居民對(duì)“世界水日”的了解程度,隨機(jī)抽取了300名年齡在[10,60]的公民進(jìn)行調(diào)查,所得結(jié)果統(tǒng)計(jì)為如圖的頻率分布直方圖.
(Ⅰ)求抽取的年齡在[30,40)內(nèi)的居民人數(shù);
(Ⅱ)若按照分層抽樣的方法從年齡在[10,20)、[50,60]的居民中抽取6人進(jìn)行知識(shí)普及,并在知識(shí)普及后再抽取2人進(jìn)行測(cè)試,求進(jìn)行測(cè)試的居民中至少有1人的年齡在[50,60]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x-$\frac{4}{a}$|+|x+a|(a>0).
(1)證明:f(x)≥4;
(2)若f(2)<5,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.甲、乙、丙三名高二學(xué)生計(jì)劃利用今年“五一”三天小長(zhǎng)假在附近的五個(gè)景點(diǎn)(五個(gè)景點(diǎn)分別是:荊州古城、三峽大壩、古隆中、明顯陵、西游記公園)每人彼此獨(dú)立地選三個(gè)景點(diǎn)游玩.其中甲同學(xué)必選明顯陵,不選西游記公園,另從其余中隨機(jī)任選兩個(gè);乙、丙兩名同學(xué)從五個(gè)景點(diǎn)中隨機(jī)任選三個(gè).
(1)求甲同學(xué)選中三峽大壩景點(diǎn)且乙同學(xué)未選中三峽大壩景點(diǎn)的概率;
(2)用X表示甲、乙、丙選中三峽大壩景點(diǎn)的人數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.二面角α-l-β的大小為$\frac{π}{4}$,直線(xiàn)AB?α,若AB與l所成的角為$\frac{π}{4}$,則AB與β所成角的正弦值=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.2016年春節(jié)期間全國(guó)流行在微信群發(fā)紅包,搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個(gè),產(chǎn)生的手氣紅包頻數(shù)分布表如下:
金額分組[1,5)[5,9)[9,13)[13,17)[17,21)[21,25)
 頻數(shù) 3 1711  82
(1)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;
(2)估計(jì)手氣紅包金額的平均數(shù)(同一組的數(shù)據(jù)用該組區(qū)間的中值點(diǎn)做代表);
(3)在這50個(gè)紅包組成的樣本中,隨機(jī)抽取兩名手氣紅包金額在[1,5)∪[21,25]內(nèi)的幸運(yùn)者,設(shè)其紅包金額分別為m,n,求|m-n|>16的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案