分析 (1)取AB1的中點(diǎn)G,聯(lián)結(jié)EG,F(xiàn)G,易證四邊形FGEC是平行四邊形,利用線面平行的判定定理即可證得CF∥平面AB1E;
(2)依題意,可證得AC⊥BB1,進(jìn)而可證AC⊥平面EB1C,結(jié)合已知,利用等體積,即可求得點(diǎn)C到平面AB1E的距離.
解答 (1)證明:取AB1的中點(diǎn)G,聯(lián)結(jié)EG,F(xiàn)G,
∵F、G分別是AB、AB1中點(diǎn),
∴FG∥BB1,F(xiàn)G=$\frac{1}{2}$BB1,
∵E為側(cè)棱CC1的中點(diǎn),
∴FG∥EC,F(xiàn)G=EC,
所以四邊形FGEC是平行四邊形,…(4分)
∴CF∥EG,
∵CF?平面AB1E,EG?平面AB1E,
∴CF∥平面AB1E.…(6分)
(2)解:∵三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,
∴BB1⊥面ABC.
又∵AC?平面ABC,
∴AC⊥BB1,
∵∠ACB=90°,
∴AC⊥BC,BB1∩BC=B.
∴AC⊥平面EB1C,
∴AC⊥CB1…(8分)
∴${V}_{A-E{B}_{1}C}$=$\frac{1}{3}×\frac{1}{2}×1×1×1$=$\frac{1}{6}$.…(10分)
∵AE=EB1=$\sqrt{2}$,AB1=$\sqrt{6}$,
∴${S}_{△A{B}_{1}E}$=$\frac{1}{2}×\sqrt{6}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{3}}{2}$.
設(shè)點(diǎn)C到平面AB1E的距離為h,則$\frac{1}{3}×\frac{\sqrt{3}}{2}h=\frac{1}{6}$,∴h=$\frac{\sqrt{3}}{3}$(12分)
點(diǎn)評 本題考查直線與平面平行的判定,考查線面垂直的性質(zhì),考查三棱錐的體積輪換公式的運(yùn)用,考查推理證明與運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {(4,0),(0,3)} | C. | {4,3} | D. | [-4,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{5}$ | B. | $\sqrt{5}$ | C. | 5 | D. | 10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com