【題目】定義:如果函數(shù)的導(dǎo)函數(shù)為,在區(qū)間上存在,使得,,則稱為區(qū)間上的“雙中值函數(shù)“已知函數(shù)上的“雙中值函數(shù)“,則實數(shù)m的取值范圍是  

A. B. C. D.

【答案】D

【解析】

根據(jù)題目給出的定義得到g′(x1)=g′(x2m,即方程x2mx+m0在區(qū)間(0,2)有兩個解,利用二次函數(shù)的性質(zhì)能求出m的取值范圍.

∵函數(shù)gxx3x2

g′(x)=x2mx,

∵函數(shù)gxx3x2是區(qū)間[0,2]上的雙中值函數(shù),

∴區(qū)間[0,2]上存在x1,x2(0<x1x2<2),

滿足g′(x1)=g′(x2m,

x12mx1x22mx2m,

x2mxm,

即方程x2mx+m0在區(qū)間(0,2)有兩個解,

fx)=x2mx+m

,

解得m

∴實數(shù)m的取值范圍是(,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;

(2)設(shè)六月份一天銷售這種酸奶的利潤為(單位:元),當(dāng)六月份這種酸奶一天的進貨量(單位:瓶)為多少時,的數(shù)學(xué)期望達到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一袋中有標(biāo)有號碼1、2、34的卡片各一張,每次從中取出一張,記下號碼后放回,當(dāng)四種號碼的卡片全部取出時即停止,則恰好取6次卡片時停止的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求所有的實數(shù)組(a、b、c),使得對任何整數(shù)n,都有.其中,表示不超過實數(shù)x的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體的8個頂點、12條棱的中點、6個側(cè)面的中心點、1個體的中心點,27個點中,共球面的8點組的個數(shù)是().

A. 4462 B. 4584 C. 4590 D. 4602

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若對任意,函數(shù)的圖像不在軸上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個零點,則下列說法錯誤的是(

A.B.C.有極大值點,且D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋中放有20個球,其中白球9個、紅球5個、黑球6個,現(xiàn)從中任取10個球,使得白球不少于個不多于7個,紅球不少于2個不多于5個、黑球不多于3個的取法種數(shù)是( )

A. 14 B. 24

C. 13 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】難度系數(shù)反映試題的難易程度,難度系數(shù)越大,題目得分率越高,難度也就越。難度系數(shù)的計算公式為,其中,為難度系數(shù),為樣本平均失分,為試卷總分(一般為100分或150分).某校高三年級的李老師命制了某專題共5套測試卷(每套總分150分),用于對該校高三年級480名學(xué)生進行每周測試.測試前根據(jù)自己對學(xué)生的了解,預(yù)估了每套試卷的難度系數(shù),如下表所示:

試卷序號

1

2

3

4

5

考前預(yù)估難度系數(shù)

0.7

0.64

0.6

0.6

0.55

測試后,隨機抽取了50名學(xué)生的數(shù)據(jù)進行統(tǒng)計,結(jié)果如下:

試卷序號

1

2

3

4

5

實測平均分

102

99

93

93

87

1)根據(jù)試卷2的難度系數(shù)估計這480名學(xué)生第2套試卷的平均分;

2)從抽樣的50名學(xué)生的5套試卷中隨機抽取2套試卷,記這2套試卷中平均分超過96分的套數(shù)為,求的分布列和數(shù)學(xué)期望;

3)試卷的預(yù)估難度系數(shù)和實測難度系數(shù)之間會有偏差.設(shè)為第套試卷的實測難度系數(shù),并定義統(tǒng)計量,若,則認為本專題的5套試卷測試的難度系數(shù)預(yù)估合理,否則認為不合理.試檢驗本專題的5套試卷對難度系數(shù)的預(yù)估是否合理.

查看答案和解析>>

同步練習(xí)冊答案