10.如圖是著名的楊輝三角,則表中所有各數(shù)的和是(  )
A.225B.256C.127D.128

分析 利用二項(xiàng)展開式系數(shù)的性質(zhì),結(jié)合等比數(shù)列的求和公式,即可求出表中所有各數(shù)的和.

解答 解:由圖可知,表中所有各數(shù)的和是20+21+22+…+26=$\frac{{2}^{7}-1}{2-1}$=27-1=127.
故選:C.

點(diǎn)評(píng) 本題考查二項(xiàng)展開式系數(shù)的性質(zhì),等比數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2+3|x-a|(a∈R).
(Ⅰ)若f(x)在[-1,1]上的最大值和最小值分別記為M(a),m(a),求M(a)-m(a);
(Ⅱ)設(shè)b∈R,若|f(x)+b|≤3對(duì)x∈[-1,1]恒成立,求3a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若f(x)的定義域是[0,2],則函數(shù)g(x)=f(x-1)-f(2-x)的定義域是( 。
A.[0,2]B.[1,3]C.[1,2]D.[0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=lnx+ax2-ax+5,a∈R.
(1)若函數(shù)f(x)在x=1處有極值,求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,若雙曲線C的一條漸近線與直線$\sqrt{3}$x-y+4=0平行,則雙曲線C的離心率為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=$\left\{\begin{array}{l}{alnx-{x}^{2}-2(x>0)}\\{x+\frac{1}{x}+a(x<0)}\end{array}$的最大值為f(-1),則實(shí)數(shù)a的取值范圍( 。
A.[0,2e2]B.[0,2e3]C.(0,2e2]D.(0,2e3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,B=60°,b2=ac,則三角形一定是( 。
A.直角三角形B.等邊三角形C.等腰直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{\frac{1}{x}+1,0<x≤2}\\{lnx,x>2}\end{array}}\right.$,如果關(guān)于x的方程f(x)=k只有一個(gè)實(shí)根,那么實(shí)數(shù)k的取值范圍是( 。
A.$(2,{e^{\frac{3}{2}}})$B.$(\frac{3}{2},+∞)$C.$(ln2,{e^{\frac{3}{2}}})$D.$(ln2,\frac{3}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知ab=1(a,b>0),則$\frac{1}{a+1}$+$\frac{9}{b+9}$的最大值是$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案