分析 (1)取B1C1的中點G,連接EG,CG,證明EFCG是平行四邊形,可得EF∥CG,即可證明EF∥平面BCC1B1
(2)利用三棱錐C1-DCB的體積=三棱錐B-C1DC的體積=$\frac{1}{3}{S}_{△DC{C}_{1}}•BC$,求三棱錐C1-DCB的體積.
解答 證明:(1)取B1C1的中點G,連接EG,CG,則EG∥A1C1,EG=$\frac{1}{2}$A1C1,
∵F是AC的中點,
∴CF∥A1C1,CF=$\frac{1}{2}$A1C1,
∴EG∥CF,EG=CF,
∴EFCG是平行四邊形,
∴EF∥CG,
∵EF?平面BCC1B1,CG?平面BCC1B1,
∴EF∥平面BCC1B1
解:(2)∵EF=2,
∴CG=2,
∵BC=2,
∴CC1=$\sqrt{3}$,
∴${V}_{{C}_{1}-DCB}$=${V}_{{B-C}_{1}DC}$=$\frac{1}{3}{S}_{△DC{C}_{1}}•BC$=$\frac{1}{3}•\frac{1}{2}•\sqrt{3}•1•2$=$\frac{\sqrt{3}}{3}$.
點評 本題考查線面平行的證明,考查三棱錐體積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
收到的手機紅包金額t(單位:元) | t≤100 | 100<t≤1000 | t>1000 |
人數(shù)(單位:人) | 150 | 100 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com