10.已知數(shù)列{an}滿足:a1=1,a2=3,an+2=(2+cosnπ)(an+1)-3(n∈N*).
(I)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=$\left\{\begin{array}{l}\frac{{{{log}_3}{a_n}}}{{{n^2}({n+2})}},n=2k({k∈{N^*}})\\{a_n},n=2k-1({k∈{N^*}})\end{array}$,Tn為數(shù)列{bn}的前n項和,求T2n.
分析 (I)討論當(dāng)n=2k-1(k∈N*),當(dāng)n=2k(k∈N*),化簡等式,可得數(shù)列{an}的奇數(shù)項為首項為a1=1,公差為-2的等差數(shù)列;偶數(shù)項為首項a2=3,公比為3的等比數(shù)列.運用等差數(shù)列和等比數(shù)列的通項公式即可得到所求數(shù)列的通項,注意運用分段形式;
(Ⅱ)化簡bn,當(dāng)n=2k時,可得bn=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+2}$),再由數(shù)列的求和方法:分組求和,結(jié)合等差數(shù)列的求和公式和裂項相消求和,化簡整理即可得到所求和.
解答 解:(I)當(dāng)n=2k-1(k∈N*),a2k+1=(2+cos(2k-1)π)(a2k-1+1)-3,
即為a2k+1=a2k-1-2;
當(dāng)n=2k(k∈N*),a2k+2=(2+cos(2kπ))(a2k+1)-3,
即為a2k+2=3a2k.
則數(shù)列{an}的奇數(shù)項為首項為a1=1,公差為-2的等差數(shù)列;
偶數(shù)項為首項a2=3,公比為3的等比數(shù)列.
即有a2k=a2•3k-1=3k;a2k-1=a1+(k-1)•(-2)=3-2k,
可得an=$\left\{\begin{array}{l}{{3}^{\frac{n}{2},}n=2k,k∈{N}^{*}}\\{2-n,n=2k-1,k∈{N}^{*}}\end{array}\right.$;
(Ⅱ)bn=$\left\{\begin{array}{l}{\frac{lo{g}_{3}{a}_{n}}{{n}^{2}(n+2)}=\frac{1}{2n(n+2)}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2}),n=2k,K∈{N}^{*}}\\{2-n,n=2k-1,k∈{N}^{*}}\end{array}\right.$,
則T2n=(b1+b3+b5+…+b2n-1)+(b2+b4+b6+…+b2n)
=$\frac{n(_{1}+_{2n-1})}{2}$+$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{6}$+$\frac{1}{6}$-$\frac{1}{8}$+…+$\frac{1}{2n}$-$\frac{1}{2n+2}$)
=$\frac{n(1+3-2n)}{2}$+$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{2n+2}$)
=2n-n2+$\frac{n}{8n+8}$.
點評 本題考查數(shù)列的通項的求法,注意運用分類討論思想方法,運用等差數(shù)列和等比數(shù)列的通項公式,考查數(shù)列的求和方法:注意運用分組求和,結(jié)合等差數(shù)列的求和公式和裂項相消求和,屬于中檔題.