6.已知a,b∈R+,m,n∈N*
(Ⅰ)求證:(an+bn)(am+bm)≤2(am+n+bm+n);
(Ⅱ)求證:$\frac{a+b}{2}$•$\frac{{{a^2}+{b^2}}}{2}$•$\frac{{{a^3}+{b^3}}}{2}$≤$\frac{{{a^6}+{b^6}}}{2}$.

分析 (Ⅰ)作差可得2(am+n+bm+n)-(an+bn)(am+bm),展開運用因式分解,推理a,b的大小,即可得證;
(Ⅱ)分別令n=1,m=2,以及m=n=3,運用(Ⅰ)的結(jié)論,即可得證.

解答 證明:(Ⅰ)2(am+n+bm+n)-(an+bn)(am+bm)=am+n+bm+n-anbm-anbm
=am(an-bn)+bm(bn-an)=(am-bm)(an-bn);
(1)若a≥b>0則,am≥bm>0,an≥bn>0,可得(am-bm)(an-bn)≥0;
(2)若0<a<b,則0<am<bm,0<an<bn,可得(am-bm)(an-bn)>0;
綜上所述總有(am-bm)(an-bn)≥0
故(an+bn)(am+bm)≤2(am+n+bm+n).
(Ⅱ)證明:由(Ⅰ)得(a+b)(a2+b2)≤2(a3+b3),
即有(a+b)(a2+b2)(a3+b3)≤2(a3+b3)(a3+b3)≤4(a6+b6
則有$\frac{a+b}{2}•\frac{{{a^2}+{b^2}}}{2}•\frac{{{a^3}+{b^3}}}{2}≤\frac{{{a^6}+{b^6}}}{2}$.

點評 本題考查不等式的證明,注意運用作差比較法,以及分類討論的思想方法,綜合法證明,考查推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若?x,y∈(0,+∞),恒有$\frac{x}{2x+y}$$+\frac{y}{x+2y}$≤a≤$\frac{x}{x+2y}$$+\frac{y}{2x+y}$,則常數(shù)a=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(其中a>b>0)的左、右焦點,橢圓C過點(-$\sqrt{3}$,1)且與拋物線y2=-8x有一個公共的焦點.
(1)求橢圓C的方程;
(2)過橢圓C的右焦點且斜率為1的直線l與橢圓交于A、B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,已知sinA=2cosB•sinC,則△ABC的形狀是( 。
A.直角三角形B.等腰三角形C.等腰直角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在一次招聘中,主考官要求應(yīng)聘者從6道備選題中一次性隨機抽取3道題,并獨立完成所抽取的3道題.甲能正確完成其中的4題,乙能正確完成每道題的概率為$\frac{2}{3}$,且每道題完成與否互不影響,規(guī)定至少正確完成2道題便可過關(guān).
(1)記所抽取的3道題中,甲答對的題數(shù)為X,求X的分布列和期望;
(2)記乙能答對的題數(shù)為Y,求Y的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}中,a1=1,Sn表示前n項和,且Sn,Sn+1,2S1成等差數(shù)列.
(1)計算S1,S2,S3的值;
(2)根據(jù)以上結(jié)果猜測Sn的表達式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a、b、c為正實數(shù),求證:abc≥$\frac{a+b+c}{\frac{1}{{a}^{2}}+\frac{1}{^{2}}+\frac{1}{{c}^{2}}}$≥(a+b-c)(b+c-a)(c+a-b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合S=$\left\{{k\left|{1≤k≤\frac{{{3^n}-1}}{2},k∈{N^*}}\right.}\right\}$(n≥2,且n∈N*).若存在非空集合S1,S2,…,Sn,使得S=S1∪S2∪…∪Sn,且Si∩Sj=∅(1≤i,j≤n,i≠j),并?x,y∈Si(i=1,2,…,n),x>y,都有x-y∉Si,則稱集合S具有性質(zhì)P,Si(i=1,2,…,n)稱為集合S的P子集.
(Ⅰ)當(dāng)n=2時,試說明集合S具有性質(zhì)P,并寫出相應(yīng)的P子集S1,S2;
(Ⅱ)若集合S具有性質(zhì)P,集合T是集合S的一個P子集,設(shè)T′={s+3n|s∈T},求證:?x,y∈T∪T′,x>y,都有x-y∉T∪T′;
(Ⅲ)求證:對任意正整數(shù)n≥2,集合S具有性質(zhì)P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=cos(2x+$\frac{π}{6}$)-sin2x.
(1)利用“五點法”列表,并畫出f(x)在[-$\frac{π}{6}$,$\frac{5π}{6}$]上的圖象;
(2)a,b,c分別是銳角△ABC中角A,B,C的對邊.若a=$\sqrt{3}$,f(A)=-$\sqrt{3}$,求△ABC的周長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案