分析 an+1=an+2an-1(n≥2),變形an+1-2an=-(an-2an-1),利用等比數(shù)列的通項(xiàng)公式可得:an+1-2an=(-1)n-1,變形為:an+1+$\frac{1}{3}$(-1)n=2[an+$\frac{1}{3}(-1)^{n-1}$],再利用等比數(shù)列的通項(xiàng)公式即可得出.
解答 解:∵an+1=an+2an-1(n≥2),
∴an+1-2an=-(an-2an-1),
∴數(shù)列{an+1-2an}是等比數(shù)列,首項(xiàng)為1,公比為-1.
∴an+1-2an=(-1)n-1,
∴an+1+$\frac{1}{3}$(-1)n=2[an+$\frac{1}{3}(-1)^{n-1}$],
∴數(shù)列{an+$\frac{1}{3}$(-1)n-1}為等比數(shù)列,公比為2,首項(xiàng)為$\frac{4}{3}$.
∴an+$\frac{1}{3}$(-1)n-1=$\frac{4}{3}$×2n-1=$\frac{{2}^{n+1}}{3}$.
∴an=$\frac{{2}^{n+1}+(-1)^{n}}{3}$.
點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,5) | B. | (4,5) | C. | (3,4) | D. | (4,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com