函數(shù)y=
x2-x+4
x-1
在x>1的條件下的最小值為
 
;此時x=
 
考點:函數(shù)的最值及其幾何意義
專題:計算題,不等式的解法及應用
分析:化簡y=
x2-x+4
x-1
=x+
4
x-1
=(x-1)+
4
x-1
+1;注意到x>1,利用基本不等式求最值.
解答: 解:y=
x2-x+4
x-1
=x+
4
x-1

=(x-1)+
4
x-1
+1≥4+1=5;
當且僅當x-1=
4
x-1
,x=3時,等號成立.
故答案為:5,3.
點評:本題考查了基本不等式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知F1、F2為橢圓
x2
25
+
y2
9
=1的兩個焦點,過F1的直線交橢圓于A、B兩點,若|F2A|+|F2B|=12,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓的方程為x2+y2-6x-8y=0,設該圓內過點 (-3,5)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為( 。
A、10
6
B、20
6
C、30
6
D、40
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+bx的圖象在點A(1,f(1))處的切線的斜率為4,則函數(shù)g(x)=
3
sin2x+bcos2x的最大值是(  )
A、1
B、2
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人同時獨立地打靶,誰先打中誰勝(如兩人在同一次都打中,則為和局,比賽結束),已知甲命中概率為
2
3
,乙命中概率為
3
4
,則第二輪分出勝負的概率為( 。
A、
5
144
B、
5
12
C、
1
18
D、
1
72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將周期為π的函數(shù)y=sin2ωx+2sinωxcosωx-cos2ωx(ω>0)的圖象按
a
=(-
π
8
,1)平移后,所得函數(shù)圖象的解析式為( 。
A、y=
2
sin(4x+
π
4
)-1
B、y=
2
sin2x+1
C、y=
2
sin(2x-
π
8
)+1
D、y=1-
2
cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長沙天心區(qū)某中學舉行春季運動會,高三某班李萍同學參加女子乒乓球單打比賽.假定從開始的小組淘汰賽到最后決定出冠亞軍共經(jīng)過5輪比賽.若李萍同學在5輪比賽中順利過關的概率依次為
5
6
,
4
5
,
3
4
,
2
3
,
1
2
試問:
(Ⅰ)李萍同學獲得該項冠軍的可能性有多大?
(Ⅱ)李萍同學在第二輪或第三輪被淘汰的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)+k在一個周期內的圖象如圖,函數(shù)f(x)解析式為(  )
A、f(x)=4sin(
1
2
x+
π
12
)-1
B、f(x)=2sin(2x-
π
12
)+1
C、f(x)=4sin(
1
2
x+
π
6
D、f(x)=2sin(2x-
π
6
)+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,n≥2,公差d<0,前n項和是Sn,則有( 。
A、nan<Sn<na1
B、na1<Sn<nan
C、Sn≥na1
D、Sn≤nan

查看答案和解析>>

同步練習冊答案