9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內(nèi),當(dāng)x=$\frac{π}{12}$時,f(x)取得最大值3;當(dāng)x=$\frac{7π}{12}$時,f(x)取得最小值-3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

分析 (1)由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(2)利用正弦函數(shù)的減區(qū)間求得函數(shù)f(x)的單調(diào)遞減區(qū)間.

解答 解:(1)∵函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內(nèi),
當(dāng)x=$\frac{π}{12}$時,f(x)取得最大值3;當(dāng)x=$\frac{7π}{12}$時,f(x)取得最小值-3,故A=3,
$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{7π}{12}$-$\frac{π}{12}$,∴ω=2,再利用五點法作圖可得2•$\frac{π}{12}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{3}$,
∴f(x)=3sin(2x+$\frac{π}{3}$).
(2)令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得 kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,
可得函數(shù)的減區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,正弦函數(shù)的減區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.雙曲線C:x2-$\frac{{y}^{2}}{3}$=1的頂點到漸近線的距離與焦點到漸近線的距離之比為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求曲線y=lnx在點M(e,1)處的切線的斜率和切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N*),則a2018=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.-225°是第(  )象限角.
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直角坐標(biāo)平面內(nèi)A、B兩點滿足:①點A、B都在函數(shù)f(x)的圖象上;②點A、B關(guān)于原點對稱,則點對(A,B)是函數(shù)y=f(x)的一個“姊妹點對”,點對(A,B)與(B,A)可看作同一個“姊妹點對”.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{|x-1|+b,x≥0}\\{\;}\end{array}\right.$,若f(x)的“姊妹點對”有兩個,則b的范圍為( 。
A.-1<b≤1B.-1≤b<1C.-1≤b≤1D.-1<b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖給出了一個程序框圖,其作用是輸入x的值,輸出相應(yīng)的y值,若要使輸入的x值與輸出的y值相等,則這樣的x值組成的集合為{0,1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=x2(x-3)的單調(diào)區(qū)間為單調(diào)遞增區(qū)間為(-∞,0),(1,+∞),單調(diào)遞減區(qū)間為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.兩條直線和一個平面所成的角相等,則這兩條直線一定平行嗎?

查看答案和解析>>

同步練習(xí)冊答案