3.在平面直角坐標(biāo)系中,角α的頂點與原點重合,始邊與x軸的非負(fù)半軸重合,終邊過點$P(-\sqrt{3},-1)$,則sinα=( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 根據(jù)題意任意角三角函數(shù)的定義即可求出.

解答 解:由題意可得 x=-$\sqrt{3}$,y=-1,r=2,
∴sinα=$\frac{y}{r}$=-$\frac{1}{2}$,
故選:A.

點評 本題考查任意角的三角函數(shù)的定義,利用任意角的定義是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過P點作圓M的切線PA、PB,切點為A、B.
(1)若點P的坐標(biāo)為(0,0),求∠APB;
(2)若點P的坐標(biāo)為(2,1),過P作直線與圓M交于C、D兩點,當(dāng)$CD=\sqrt{2}$時,求直線CD的方程;
(3)經(jīng)過A、P、M三點的圓是否經(jīng)過異于點M的定點,若經(jīng)過,請求出此定點的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=2{sin^2}(x+\frac{3π}{2})+\sqrt{3}$sin(π-2x)
(1)若$x∈[0,\frac{π}{2}]$,求f(x)的取值范圍;
(2)求函數(shù)$y={log_{\frac{1}{2}}}$f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某車間20名工人年齡數(shù)據(jù)如表:
年齡(歲)19242630343540合計
工人數(shù)(人)133543120
(Ⅰ) 求這20名工人年齡的眾數(shù)與平均數(shù);
(Ⅱ) 以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(Ⅲ) 從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點E、F分別為棱AC、AD的中點.
(1)求證:DC⊥平面ABC;
(2)設(shè)CD=1,求三棱錐A-BFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.閱讀如圖的程序框圖,若輸出s的值為-7,則判斷框內(nèi)可填寫①
①i<6?②i<4?③i<5?④i<3?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,平面四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求證:AC⊥平面BDEF;
(2)求證:FC∥平面EAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求滿足下列條件的曲線方程:
(1)經(jīng)過兩條直線2x+y-8=0和x-2y+1=0的交點,且垂直于直線6x-8y+3=0的直線
(2)經(jīng)過點C(-1,1)和D(1,3),圓心在x軸上的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=\sqrt{7}$,$|{\overrightarrow a-\overrightarrow b}|=\sqrt{3}$,則$\overrightarrow a•\overrightarrow b$的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案