函數(shù)f(x)=sinxcosx-
3
cos(π+x)cosx(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)的值域、單調區(qū)間.
考點:三角函數(shù)中的恒等變換應用
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質
分析:(1)首先利用三角函數(shù)的恒等變換把函數(shù)的關系式變形成正弦型函數(shù),進一步利用正弦型公式求出函數(shù)的最小正周期.
(2)利用整體思想求出函數(shù)的值域和單調區(qū)間.
解答: 解:(1)f(x)=sinxcosx-
3
cos(π+x)cosx
=
1
2
sin2x+
3
cos2x+1
2

=sin(2x+
π
3
)+
3
2

所以函數(shù)f(x)的正周期為:T=
2

(2)①x∈R
所以:-1≤sin(2x+
π
3
)≤1

則:
3
2
-1≤f(x)≤1+
3
2

②令:-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ
(k∈Z)
解得:-
12
+kπ≤x≤
π
12
+kπ

所以函數(shù)的單調增區(qū)間為:[-
12
+kπ,
π
12
+kπ
](k∈Z).
令:
π
2
+2kπ≤2x+
π
3
2
+2kπ
(k∈Z)
解得:
π
12
+kπ≤x≤
12
+kπ

所以函數(shù)的單調遞減區(qū)間為:[
π
12
+kπ,
12
+kπ
](k∈Z).
點評:本題考查的知識要點:三角函數(shù)關系式的恒等變換,正弦型函數(shù)的周期的公式的應用,正弦型函數(shù)單調性的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知π<β<2π且tanβ=-2,求sinβ-cosβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,圓C1和C2的參數(shù)方程分別是
x=2+2cosφ
y=2sinφ
(φ為參數(shù))和
x=cosφ
y=1+sinφ
(φ為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求圓C1和C2的極坐標方程;
(2)射線OM:θ=a與圓C1的交點為O、P,與圓C2的交點為O、Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從拋物線x2=4y上一點P(第一象限內)引x軸的垂線,垂足為M,設拋物線的焦點為F,若|PF|=5,則直線PM、x軸與拋物線圍成的圖形面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=x(x-1)(x-2)…(x-50)在原點處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某通訊船在A處測得正東北9 n mile的C處有一漁船,該漁船正沿南偏東75°的方向以5 n mile/h的速度前進,通訊船以7n mile/h的速度沿直線方向航行與漁船相會,問通訊船應沿什么方向航行,才能在最短時間內與漁船相會?并求出所需時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:x2-x>lnx,x∈(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線f(x)=
x2+a
x+1
在點(1,f(1))處切線的傾斜角為
4
,則實數(shù)a=( 。
A、1B、-1C、7D、-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了調查學生星期天晚上學習時間利用問題,某校從高二年級100名學生(其中走讀生450名,住宿生550名)中,采用分層抽樣的方法抽取n名學生進行問卷調查,根據(jù)問卷取得了這n名同學每天晚上學習時間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組
①[0,30),②[30,60)③[60,90)④[90,120)⑤[120,150)⑥[150,180)⑦[180,210)⑧[210,240),得到頻率布直方圖如圖,已知抽取的學生中星期天晚上學習時間少于60分鐘的人數(shù)為5人.
(1)求n的值并補全下列頻率分布直方圖;
(2)如果把“學生晚上學習時間達到兩小時”作為是否充分利用時間的標準,對抽取的n名學生,完成下列2×2列聯(lián)表:
利用時間充分利用時間不充分合計
走讀生
 
 
 
住校生
 
10
 
合計
 
 
 
據(jù)此資料,你是否認為學生“利用時間是否充分”與走讀、住校有關?
(3)若在第①組、第②組共抽出2人調查影響有效利用時間的原因,求抽出的2人中第①組第②組各有1人的概率.

查看答案和解析>>

同步練習冊答案