7.如圖1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F(xiàn)分別為AC,BC的中點(diǎn),沿EF將△CEF折起,得到如圖2所示的四棱錐C′-ABFE
(Ⅰ)求證:AB⊥平面AEC′;
(Ⅱ)當(dāng)四棱錐C′-ABFE體積取最大值時(shí),
(i)若G為BC′中點(diǎn),求異面直線GF與AC′所成角;
(ii)在C′-ABFE中AE交BF于C,求二面角A-CC′-B的余弦值.

分析 (Ⅰ)推導(dǎo)出EF⊥AE,EF⊥C'E,從而EF⊥平面AEC',由此能證明AB⊥平面AEC'.
(Ⅱ)(i)取AC'中點(diǎn)D,連接DE,EF,F(xiàn)G,GD,推導(dǎo)出四邊形DEFG 為平行四邊形,直線GF 與AC'所成角就是DE 與AC'所成角,由此能求出直線GF 與AC'所成角.
(ii) 分別以EA、EF、EC'所在直線為x 軸、y 軸、z 軸,建立空間直角坐標(biāo)系,利用向量法能求出平面C'AE與平面C'BF的平面角的夾角的余弦值.

解答 證明:(Ⅰ)因?yàn)椤鰽BC 是等腰直角三角形,∠CAB=90°,E,F(xiàn) 分別為AC,BC 的中點(diǎn),
所以EF⊥AE,EF⊥C'E.
又因?yàn)锳E∩C'E=E,所以EF⊥平面AEC'.
由于EF∥AB,所以有AB⊥平面AEC'.4分
解:(Ⅱ)(i)取AC'中點(diǎn)D,連接DE,EF,F(xiàn)G,GD,
由于GD 為△ABC'中位線,以及EF 為△ABC 中位線,
所以四邊形DEFG 為平行四邊形.
直線GF 與AC'所成角就是DE 與AC'所成角.
所以四棱錐C'-ABFE 體積取最大值時(shí),C'E 垂直于底面ABFE.
此時(shí)△AEC'為等腰直角三角形,
ED 為中線,所以直線ED⊥AC'.
又因?yàn)镋D∥GF,所以直線GF 與AC'所成角為$\frac{π}{2}$.10分
(ii) 因?yàn)樗睦忮FC'-ABFE 體積取最大值,
分別以EA、EF、EC'所在直線為x 軸、y 軸、z 軸,建立空間直角坐標(biāo)系如圖,
則C'(0,0,a),B(a,2a,0),F(xiàn)(0,a,0),C'B(a,2a,-a),C'F(0,a,-a).
設(shè)平面C'BF 的一個(gè)法向量為$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{C}^{'}B}=ax+2ay-az=0}\\{\overrightarrow{n}•\overrightarrow{{C}^{'}F}=ay-az=0}\end{array}\right.$得,取y=1,得$\overrightarrow{n}$=(-1,1,1).
平面C'AE 的一個(gè)法向量$\overrightarrow{m}$=(0,1,0).
所以cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$,
故平面C'AE與平面C'BF的平面角的夾角的余弦值為$\frac{\sqrt{3}}{3}$.14分

點(diǎn)評 本題考查線面垂直的證明,考查線線角的求法,考查二面角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求y=(log${\;}_{\frac{1}{2}}$x)2-2log${\;}_{\frac{1}{2}}$x的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若點(diǎn)D滿足$\overrightarrow{BD}=2\overrightarrow{DC}$,則$\overrightarrow{AD}$=( 。
A.$\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$B.$\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}$C.$\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}$D.$\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex
(Ⅰ)求函數(shù)g(x)=sinx•f(x)在(0,π)上的單調(diào)區(qū)間;
(Ⅱ)求證:$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(-2-x),且函數(shù)y=f(x-1)為偶函數(shù),f(-3)=e,則不等式f(x)<ex的解集為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.BD是等腰直角三角形△ABC腰AC上的中線,AM⊥BD于點(diǎn)M,延長AM交BC于點(diǎn)N,AF⊥BC于點(diǎn)F,AF與BD交于點(diǎn)E.
(1)求證;△ABE≌△ACN;
(2)求證:∠ADB=∠CDN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.“整數(shù)對”按如下規(guī)律排成一列:
(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…則第50個(gè)數(shù)對是(5,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某零售店近五個(gè)月的銷售額和利潤額資料如下表:
商店名稱ABCDE
銷售額x/千萬35679
利潤額y/百萬元23345
(1)求利潤額y關(guān)于銷售額x的線性回歸方程.
(2)當(dāng)銷售額為4(千萬元)時(shí),利用(2)的結(jié)論估計(jì)該零售店的利潤額(百萬元).
(附:在線性回歸方程$\widehat{y}$=$\widehat$x$+\widehat{a}$中,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$$-\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在銳角△ABC中,a、b分別是角A、B的對邊,若2bsinA=a,則角B等于( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊答案