分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)令a>b>0,且a=lnm,b=lnn,問題轉(zhuǎn)化為證明$\frac{m-n}{lnm-lnn}$<$\frac{m+n}{2}$,即ln$\frac{m}{n}$>$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$,令t=$\frac{m}{n}$,則t>1,問題轉(zhuǎn)化為lnt>$\frac{2(t-1)}{t+1}$=2-$\frac{4}{t+1}$,即lnt+$\frac{4}{t+1}$-2>0,(t>1),令h(t)=lnt+$\frac{4}{t+1}$-2,根據(jù)函數(shù)的單調(diào)性,求出h(t)>h(0),從而證出結(jié)論.
解答 解:(Ⅰ)g(x)=sinx•f(x)=sinxex,x∈(0,π),
g′(x)=$\sqrt{2}$exsin(x+$\frac{π}{4}$),
令g′(x)>0,即0<x+$\frac{π}{4}$<π,x∈(0,π),
解得:0<x<$\frac{3π}{4}$,
令g′(x)<0,解得:即π<x+$\frac{π}{4}$<π+$\frac{π}{4}$,
解得:$\frac{3π}{4}$<x<π,
∴g(x)在(0,$\frac{3π}{4}$)遞增,在($\frac{3π}{4}$,π)遞減;
(Ⅱ)令a>b>0,且a=lnm,b=lnn,
∴$\frac{f(a)-f(b)}{a-b}$=$\frac{m-n}{lnm-lnn}$,$\frac{f(a)+f(b)}{2}$=$\frac{m+n}{2}$,
問題轉(zhuǎn)化為證明$\frac{m-n}{lnm-lnn}$<$\frac{m+n}{2}$,
即ln$\frac{m}{n}$>$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$,
令t=$\frac{m}{n}$,則t>1,
∴問題轉(zhuǎn)化為lnt>$\frac{2(t-1)}{t+1}$=2-$\frac{4}{t+1}$,
即lnt+$\frac{4}{t+1}$-2>0,(t>1),
令h(t)=lnt+$\frac{4}{t+1}$-2,
h′(t)=$\frac{1}{t}$-$\frac{4}{{(t+1)}^{2}}$=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$>0,
∴h(t)在(1,+∞)遞增,
∴h(t)>h(1)=0,
故$\frac{m-n}{lnm-lnn}$<$\frac{m+n}{2}$,
即$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,轉(zhuǎn)化思想、換元思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
評分等級 | [0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
男(人數(shù)) | 2 | 5 | 9 | 5 | 4 |
女(人數(shù)) | 1 | 2 | 5 | 10 | 7 |
滿意 | 不滿意 | 總計(jì) | |
男 | 16 | 9 | 25 |
女 | 8 | 17 | 25 |
總計(jì) | 24 | 26 | 50 |
P=(K2≥x0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{π}{3}$,$\frac{2}{3}π$) | B. | ($\frac{π}{6}$,$\frac{5}{6}π$) | C. | [$\frac{π}{3}$,$\frac{5}{6}π$) | D. | ($\frac{5}{6}π$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平均每天鍛煉 的時(shí)間(分鐘) | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 為偶函數(shù) | B. | 為奇函數(shù) | ||
C. | 既為奇函數(shù)又為偶函數(shù) | D. | 為非奇非偶函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com