17.在銳角△ABC中,a、b分別是角A、B的對(duì)邊,若2bsinA=a,則角B等于( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

分析 根據(jù)正弦定理,進(jìn)行化簡(jiǎn)求出sinB的值,由銳角三角形求出B的值.

解答 解:銳角△ABC中,2bsinA=a,
由正弦定理得,2sinB•sinA=sinA,
又sinA≠0,
所以sinB=$\frac{1}{2}$,
所以B=$\frac{π}{6}$.
故選:B.

點(diǎn)評(píng) 本題考查了正弦定理的應(yīng)用問題,也考查了由值求角的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F(xiàn)分別為AC,BC的中點(diǎn),沿EF將△CEF折起,得到如圖2所示的四棱錐C′-ABFE
(Ⅰ)求證:AB⊥平面AEC′;
(Ⅱ)當(dāng)四棱錐C′-ABFE體積取最大值時(shí),
(i)若G為BC′中點(diǎn),求異面直線GF與AC′所成角;
(ii)在C′-ABFE中AE交BF于C,求二面角A-CC′-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}是等比數(shù)列,則“a1<a2”是“數(shù)列{an}為遞增數(shù)列”的( 。
A.充分不必要條件B.充分必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.觀察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由此可歸納出:若函數(shù)f(x)是定義在R上的偶函數(shù),則f′(x)(  )
A.為偶函數(shù)B.為奇函數(shù)
C.既為奇函數(shù)又為偶函數(shù)D.為非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}}$)-$\sqrt{3}$cos2x+$\frac{{\sqrt{3}}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在[-$\frac{π}{4},\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).1可以分拆為若干個(gè)不同的單位分?jǐn)?shù)之和:
1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,
1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,
1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,
…,
依此類推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中,m、n∈N*,則mn=( 。
A.228B.240C.260D.273

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.近年來我國(guó)電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇.2016年618期間,某購物平臺(tái)的銷售業(yè)績(jī)高達(dá)516億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(Ⅰ)先完成關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(Ⅱ)若將頻率視為概率,某人在該購物平臺(tái)上進(jìn)行的3次購物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量X:
①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)X的分布列;
②求X的數(shù)學(xué)期望和方差.
附臨界值表:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的觀測(cè)值:k=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表:
對(duì)服務(wù)好評(píng)對(duì)服務(wù)不滿意合計(jì)
對(duì)商品好評(píng)a=80b=40120
對(duì)商品不滿意c=70d=1080
合計(jì)15050n=200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在直角坐標(biāo)系中,已知曲線C:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),若以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=2cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(1)+lnx,則f′(1)等于(  )
A.-1B.-eC.1D.-4e

查看答案和解析>>

同步練習(xí)冊(cè)答案