13.某烹飪學(xué)院為了弘揚(yáng)中國傳統(tǒng)的飲食文化,舉辦了一場(chǎng)由在校學(xué)生參加的處以大賽,組委會(huì)為了了解本次大賽參賽學(xué)生的成績(jī)情況,從參賽學(xué)生中抽取了n名學(xué)生的成績(jī)(滿分100分)作為樣本,將所得數(shù)經(jīng)過分析整理后畫出了評(píng)論分布直方圖和莖葉圖,其中莖葉圖收到污染,請(qǐng)據(jù)此解答下列問題:
(1)求頻率分布直方圖中a,b的值并估計(jì)此次參加廚藝大賽學(xué)生的平均成績(jī);
(2)規(guī)定大賽成績(jī)?cè)赱80,90)的學(xué)生為廚霸,在[90,100]的學(xué)生為廚神,現(xiàn)從被稱為廚霸、廚神的學(xué)生中隨機(jī)抽取2人取參加校際之間舉辦的廚藝大賽,求所取2人總至少有1人是廚神的概率.

分析 (1)首先根據(jù)第一組相關(guān)的數(shù)據(jù)可求得n的值,然后根據(jù)頻率等于矩形面積求a,b,利用頻率分布直方圖能估計(jì)此次參加廚藝大賽學(xué)生的平均成績(jī).
(2)根據(jù)條件求出廚霸與廚神的人數(shù),然后利用對(duì)立事件概率公式計(jì)算結(jié)果.

解答 解:(1)由題意得:n=$\frac{5}{0.0125×10}=40$,
∴a=$\frac{3}{40×10}=0.0075$.
b=$\frac{1}{10}$-0.0075-0.0125-0.0150-0.0450=0.020.
此次參加廚藝大賽學(xué)生的平均成績(jī)?yōu)椋?br />55×0.0125×10+65×0.020×10+75×0.0450×10+85×0.0150×10+95×0.0075×10=73.5.
(2)由題意得廚霸有0.0150×10×40=6人,
廚神有0.0075×10×40=3人,
從中任取2 人,基本事件總數(shù)n=${C}_{9}^{2}$=36,
所取2人總至少有1人是廚神的對(duì)立事件是所取2人都是廚霸,
∴所取2人總至少有1人是廚神的概率p=1-$\frac{{C}_{6}^{2}}{{C}_{9}^{2}}$=$\frac{7}{12}$.

點(diǎn)評(píng) 本題考查頻率分布直方圖、莖葉圖、古典概型等基礎(chǔ)知識(shí),意在考查數(shù)據(jù)處理能力、運(yùn)算求解能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax+1n(x-1),其中a為常數(shù).
(1)若h(x)=f(x+1),試討論h(x)的單調(diào)區(qū)間;
(2)若$a=\frac{1}{1-e}$時(shí),存在x使得不等式$\sqrt{{f^2}(x)}-\frac{e}{e-1}≤\frac{21nx+bx}{2x}$成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在(1-x)11的展開式中,x的奇次冪的項(xiàng)的系數(shù)之和是( 。
A.-211B.-210C.211D.210-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校有1400名考生參加市模擬考試,現(xiàn)采用分層抽樣的方法從文、理考生中分別抽取20份和50份數(shù)學(xué)試卷,進(jìn)行成績(jī)分析.得到下面的成績(jī)頻率分布表:
分?jǐn)?shù)分值[0,30)[30,60)[60,90)[90,120)[120,150)
文科頻數(shù)24833
理科頻數(shù)3712208
(1)估計(jì)文科數(shù)學(xué)平均分及理科考生的及格人數(shù)(90分為及格分?jǐn)?shù)線);
(2)在試卷分析中,發(fā)現(xiàn)概念性失分非常嚴(yán)重,統(tǒng)計(jì)結(jié)果如下:
文科理科
概念1530
其它520
問是否有90%的把握認(rèn)為概念失分與文、理考生的不同有關(guān)?(本題可以參考獨(dú)立性檢驗(yàn)臨界值表)
附參考公式與數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在x軸上有一點(diǎn)P,它與點(diǎn)P1(4,1,2)之間的距離為$\sqrt{30}$,則點(diǎn)P的坐標(biāo)是(9,0,0)或(-1,0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從4名男同學(xué)和3名女同學(xué)中選出3名參加某項(xiàng)活動(dòng),其中男女生都有的選法種數(shù)為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若不等式x2+ax+1≥0對(duì)于一切x∈[0,+∞)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計(jì)算:16${\;}^{\frac{1}{lo{g}_{6}4}}$+49${\;}^{\frac{1}{lo{g}_{8}7}}$=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,橢圓的中心在原點(diǎn),其左焦點(diǎn)F1與拋物線y2=-4x的焦點(diǎn)重合,過點(diǎn)F1的直線l與橢圓交于A,B兩點(diǎn),與拋物線交于C,D兩點(diǎn),當(dāng)直線l與x軸垂直時(shí),$\frac{|CD|}{|AB|}$=2$\sqrt{2}$.
(1)求橢圓的方程;
(2)設(shè)F2是橢圓的右焦點(diǎn),求$\overrightarrow{{F_2}A}$•$\overrightarrow{{F_2}B}$的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案