2.已知$tanθ=-\frac{4}{3}$(0<θ<π),則cosθ=$-\frac{3}{5}$.

分析 利用同角三角函數(shù)基本關(guān)系式化簡求解即可.

解答 解:∵$tanθ=-\frac{4}{3}$(0<θ<π),$\frac{sinθ}{cosθ}$=-$\frac{4}{3}$,cosθ<0,sinθ>0,sin2θ+cos2θ=1,
∴sinθ=$\frac{4}{5}$,cosθ=$-\frac{3}{5}$,
故答案為:-$\frac{3}{5}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+1,x≥0\\{x^2}-1,x<0\end{array}$,則f(f(-2))=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.圖(1)是某高三學(xué)生進(jìn)入高中三年來的數(shù)學(xué)考試成績的莖葉圖,第1次到第12次的考試成績依次記為A1,A2,…,A12.圖(2)是統(tǒng)計(jì)莖葉圖中成績?cè)谝欢ǚ秶鷥?nèi)考試次數(shù)的一個(gè)程序框圖.那么輸出的結(jié)果是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.f(x)=2+tanx,在($\frac{π}{4}$,f($\frac{π}{4}$))處的切線方程$y-3=2(x-\frac{π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x2-a)ex,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個(gè)不同的極值點(diǎn)x1,x2,求證:f(x1)f(x2)<4e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線在左支相交于A、B兩點(diǎn).如果|AF2|+|BF2|=2|AB|,那么|AB|=4a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸入x=78,則循環(huán)體執(zhí)行的次數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知變量x,y滿足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$,則$\frac{x+y+3}{x+2}$的最大值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知E,F(xiàn),G,H為空間四邊形ABCD的四條邊上的點(diǎn),且四邊形EFGH為平行四邊形.證明:
(1)EH∥平面BCD
(2)BD∥平面EFGH.

查看答案和解析>>

同步練習(xí)冊(cè)答案